World first -- Localized delivery of an anti-cancer drug by remote-controlled microcarriers

Mar 16, 2011

Known for being the world's first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a spectacular new breakthrough in the field of nanomedicine. Using a magnetic resonance imaging system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered.

Soon, drug delivery that precisely targets without exposing the healthy surrounding tissue to the medication's toxic effects will no longer be an oncologist's dream but a medical reality, thanks to the work of Professor Sylvain Martel, Director of the Nanorobotics Laboratory at Polytechnique Montreal.

Known for being the world's first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a spectacular new breakthrough in the field of . Using a (MRI) system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered. This is a medical first that will help improve chemoembolization, a current treatment for liver cancer.

Microcarriers on a mission

The therapeutic magnetic microcarriers (TMMCs) were developed by Pierre Pouponneau, a PhD candidate under the joint direction of Professors Jean-Christophe Leroux and Martel. These tiny agents, made from and measuring 50 micrometers in diameter — just under the breadth of a hair — encapsulate a dose of a therapeutic agent (in this case, doxorubicin) as well as magnetic nanoparticles. Essentially tiny magnets, the nanoparticles are what allow the upgraded MRI system to guide the microcarriers through the blood vessels to the targeted organ. During the experiments, the TMMCs injected into the bloodstream were guided through the hepatic artery to the targeted part of the liver where the drug was progressively released. The results of these in-vivo experiments have recently been published in the prestigious journal Biomaterials and the patent describing this technology has just been issued in the United States.

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

More information: Pouponneau, P., Leroux, J.-C., Soulez, G., Gaboury, L. and Martel, S. (2011). Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials. Volume 32, Issue 13, May 2011, Pages 3481-3486. DOI:10.1016/j.biomaterials.2010.12.059

Provided by Polytechnique Montreal

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Fantastic voyage: From science fiction to reality

Mar 19, 2007

Some 40 years after the release of the classic science fiction movie Fantastic Voyage, researchers in the NanoRobotics Laboratory of École Polytechnique de Montréal’s Department of Computer Engineering and Institute of ...

New Nanoparticle Structure Boosts Magnetic Properties

Dec 19, 2005

Magnetic nanoparticles have shown promise as contrast-enhancing agents for improving cancer detection using magnetic resonance imaging (MRI), as miniaturized heaters capable of killing malignant cells, and as targeted drug ...

Magnetic Nanocrystals Carry Tumor-Killing Drugs

Mar 07, 2007

Imagine using a focused magnetic field to concentrate anticancer drugs in and around tumors, and then turning off the magnetic field so that the drugs then leave the body. That possiblity may become a reality as a result ...

Recommended for you

Scientists grow a new challenger to graphene

2 hours ago

A team of researchers from the University of Southampton's Optoelectronics Research Centre (ORC) has developed a new way to fabricate a potential challenger to graphene.

Nanotubes help healing hearts keep the beat

2 hours ago

(Phys.org) —Carbon nanotubes serve as bridges that allow electrical signals to pass unhindered through new pediatric heart-defect patches invented at Rice University and Texas Children's Hospital.

User comments : 0