# Taking mathematics to heart

##### March 14, 2011

Did you know that heart attacks can give you mathematics? That statement appears on the web site of James Keener, who works in the mathematics of cardiology. This area has many problems that are ripe for unified attack by mathematicians, clinicians, and biomedical engineers. In an article to appear in the April 2011 issue of the Notices of the American Mathematical Society, John W. Cain, a mathematician at Virginia Commonwealth University, presents a survey of six ongoing Challenge Problems in mathematical cardiology. Cain's article emphasizes cardiac electrophysiology, because some of the most exciting research problems in mathematical cardiology involve electrical wave propagation in heart tissue.

At some point in our lives, many of us will undergo an electrocardiogram (ECG), a recording of electrical activity in the . To understand where these tiny electrical currents originate, we must zoom in to the molecular level. Bodily fluids, such as blood, contain positively charged ions. When these ions traverse cell membranes, they cause electrical currents, which in turn elicit changes in the voltage V across the membrane. If a sufficiently strong stimulus current is applied to a sufficiently well-rested cell, then the cell experiences an "action potential": V suddenly spikes and remains elevated for a prolonged interval. These action potentials govern heartbeat patterns and are therefore critical to understanding and treating disorders like arrhythmia () and in particular tachycardia (faster than normal heart rhythms).

Taking the Nobel Prize-winning work of Hodgkin and Huxley as a starting point, researchers have created mathematical models of the cardiac action potential by viewing the cardiac cell membrane as an . A major challenge that Cain identifies is striking a balance between feasiblity and complexity: Minimize complications in the model, so that it is amenable to mathematical analysis, but add sufficient detail, so that the model reproduces as much clinically relevant data as possible. The equations that govern the model---nonlinear partial differential equations---cannot be solved explicitly, and solutions must be obtained through approximation by numerical methods. Adding further complications are the intricate geometry of the heart, with its four chambers and connections to veins and arteries, and the fact that different types of cardiac tissue have different conduction properties.

Cain goes on to discuss various cardiac phenomena and the mathematics that can be used to describe them. One example is heart rhythm: The regular, coordinated contraction of the heart muscle that pumps blood through the body. Improving the understanding and treatment of irregularities in that rhythm is critical in the fight against heart disease.

A healthy heart does not beat in a perfectly regular pattern; in fact, such a pattern would be a sign of potentially serious pathologies. The body's autonomic nervous system uses neurotransmitters to speed up or slow down the heart, and tiny fluctuations in those substances induce variability in the intervals between consecutive beats. The RR interval is the interval between consecutive heartbeats measured in an ECG. Attempts to quantify heart rate variability (HRV) usually involve analyzing time series of RR intervals.

Unfortunately, some ways of analyzing RR time series give the same results for patients with healthy hearts and for those with fatal cardiac abnormalities. One challenge for mathematicians and statisticians is to devise quantitative methods for distinguishing between the RR time series of people with healthy hearts and the RR time series of those with cardiac pathologies. Cain asks, Can some pathologies be diagnosed solely by analysis of RR time series and, if so, which ones? To spot subtle pathologies, methods are needed for quantifying the "regularity" of a cardiac rhythm. Also, given the existing array of diagnostic tests that clinicians have at their disposal, there could be advantages in the use of "automated" mathematical/statistical methods.

Explore further: Secrets of the Heart's Signals

More information: Cain's article, "Taking Math to Heart: Mathematical Challenges in Cardiac Electrophysiology", is freely available on the Notices web site - www.ams.org/notices.

## Related Stories

#### Secrets of the Heart's Signals

January 10, 2007

Natalia Trayanova's research team works on understanding the heart's natural electrical signaling process. The director of the Computational Cardiac Electrophysiology Lab, she is a faculty member in the biomedical engineering ...

#### Keeping the rhythm of life in sync

May 28, 2008

Beyond symbolically holding our feelings of love and compassion, the heart is a very efficient pump with a steady beat that provides the rhythm of life. Abnormal rhythm in the heart is a condition known as cardiac arrhythmia. ...

#### Researchers examine developing hearts in chickens to find solutions for human heart abnormalities (Video)

January 21, 2009

When it is head versus heart, the heart comes first. The heart is the first organ to develop and is critical in supplying blood to the rest of the body. Yet, little is known about the complex processes that regulate the heartbeat. ...

#### Hospitals should be aware of rare, life-threatening heart rhythm

February 8, 2010

(PhysOrg.com) -- Hospital care providers need to be more aware that cardiac arrest from a medication-induced heart rhythm problem is a rare but potentially catastrophic event in patients, according to a joint scientific statement ...

#### New mathematical model could aid studies of cardiac muscle

July 26, 2010

Researchers have developed a new mathematical model that may provide a simpler and better way of predicting ventricular function during the cardiac cycle. The new model could help researchers improve treatment options for ...

#### DNA sequence variations linked to electrical signal conduction in the heart

November 14, 2010

(PhysOrg.com) -- Scientists studying genetic data from nearly 50,000 people have uncovered several DNA sequence variations associated with the electrical impulses that make the heart beat. The findings, reported in Nature ...

## Recommended for you

#### Betrayals of trust helped the rapid spread of human species around the world

November 24, 2015

New research by an archaeologist at the University of York suggests that betrayals of trust were the missing link in understanding the rapid spread of our own species around the world.

#### Income inequality makes the rich more Scrooge-like, study finds

November 24, 2015

As the annual "season of giving" dawns, a new study finds that stark income inequity - a dramatically rising trend in the United States - makes the "haves" less generous toward others.

#### Biologists trace how human innovation impacts tool evolution

November 24, 2015

Many animals exhibit learned behaviors, but humans are unique in their capacity to build on existing knowledge to make new innovations. Understanding the patterns of how new generations of tools emerged in prehistoric societies, ...

#### First Londoners were multi-ethnic mix: museum

November 23, 2015

A DNA analysis of four ancient Roman skeletons found in London shows the first inhabitants of the city were a multi-ethnic mix similar to contemporary Londoners, the Museum of London said on Monday.

#### New species of early anthropoid primate found amid Libyan strife

November 23, 2015

During upheaval in Libya in 2013, a window of opportunity opened for scientists from the University of Kansas to perform research at the Zallah Oasis, a promising site for unearthing fossils from the Oligocene period, roughly ...

#### Dental analysis suggests Homo floresiensis was a separate species from modern man

November 20, 2015

(Phys.org)—A team of researchers affiliated with the National Museum of Nature and Science in Japan, The University of Wollongong in Australia and The National Research and Development Centre for Archaeology, in Indonesia, ...