Boiling bubbles are cool in space

Mar 01, 2011 By Lori Meggs
NPBX Experiment -- boiling at Earth normal gravity and low gravity. Credit: NASA

(PhysOrg.com) -- It may seem illogical, but boiling is a very efficient way to cool engineering components and systems used in the extreme environments of space.

An experiment to gain a basic understanding of this phenomena launched to the on Feb. 24. The Nucleate Pool Experiment, or NPBX, is one of two experiments in the new Boiling eXperiment Facility, or BXF.

Nucleate boiling is bubble growth from a heated surface and the subsequent detachment of the bubble to a cooler surrounding liquid. As a result, these bubbles can efficiently transfer energy from the boiling surface into the surrounding fluid. This investigation provides an understanding of heat transfer and vapor removal processes that happen during nucleate boiling in microgravity. Researchers will glean information to better design and operate space systems that use boiling for efficient heat removal.

Bubbles in microgravity grow to different sizes than on Earth. This experiment will focus on the dynamics of single and multiple bubbles and the associated heat transfer.

NPBX uses a polished aluminum wafer, powered by heaters bonded to its backside, and five fabricated cavities that can be controlled individually. The experiment will study single and/or multiple bubbles generated at these cavities. It will measure the power supplied to each heater group, and cameras will record the bubble dynamics. Analysis of the heater power data and recorded images will allow investigators to determine how bubble dynamics and heat transfer differ in microgravity.

"With boiling, the size and weight of heat exchange equipment used in space systems can be significantly reduced," said Vijay Dhir, the experiment's principal investigator at the University of California, Los Angeles. "Boiling and multiphase is an enabling technology for space exploration missions including storage and handling of cryogenic, or extremely low temperature liquids, life support systems, power generation and thermal management."

"The cost of transporting equipment to space depends on the size and weight of the equipment," added David Chao, the project scientist from NASA's Glenn Research Center in Cleveland. "The knowledge base that will be developed through the experiment will give us the capability to achieve cooling of various components and systems used in space in an efficient manner and could lead to smaller and lighter spacecraft."

Explore further: Holiday lights on the Sun: SDO imagery of a significant solar flare

add to favorites email to friend print save as pdf

Related Stories

UMD engineers to test boiling at zero-gravity

Feb 25, 2011

Here on Earth, the process of boiling is used for tasks ranging from cooking and heating to power generation. In space exploration, boiling may also be used for power generation and other applications, but ...

Explosion on chip sets liquid in motion

Oct 30, 2008

(PhysOrg.com) -- PhD student, Dennis van den Broek, of the University of Twente, Netherlands, has developed a new type of miniature motor, the micro-bubble actuator. This ‘motor’, which can be used in ...

Recommended for you

Scientists 'map' water vapor in Martian atmosphere

7 hours ago

Russian scientists from the Space Research Institute of the Russian Academy of Sciences and the Moscow Institute of Physics and Technology (MIPT), together with their French and American colleagues, have ...

Water fleas prepared for trip to space

12 hours ago

Local 'Daphnia' waterfleas are currently being prepared by scientists at the University of Birmingham for their trip to the International Space Station (ISS), where they will be observed by astronauts.

The worst trip around the world

12 hours ago

As you celebrate the end of the year in the warmth of your home, spare a thought for the organisms riding with a third-class ticket on the International Space Station – bolted to the outside with no protection ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.