Unique new probe of proton spin structure at Relativistic Heavy Ion Collider

Feb 15, 2011
Illustration of a new measurement using W boson production in polarized proton collisions at RHIC. Collisions of polarized protons (beam entering from left) and unpolarized protons (right) result in the production of W bosons (in this case, W-). RHIC's detectors identify the particles emitted as the W bosons decay (in this case, electrons, e-) and the angles at which they emerge. The colored arrows represent different possible directions, which probe how different quark flavors (e.g., “anti-up,” ū; and “down,” d) contribute to the proton spin.

Scientists hoping to unravel the mystery of proton spin at the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference particle accelerator at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, have a new tool at their disposal — the first to directly explore how quarks of different types, or “flavors,” contribute to the overall spin of the proton. The technique, described in papers just published by RHIC’s STAR and PHENIX collaborations in Physical Review Letters, relies on the measurement of particles called W bosons, the mediators of the weak force responsible for the decay of radioactive nuclei.

“Exploring the mystery of proton has been one of the key scientific research goals at RHIC,” said Steven Vigdor, Brookhaven’s Associate Laboratory Director for Nuclear and Particle Physics. “Like many scientific mysteries, this one turns out to be more complex the more we learn about it. The W boson measurements were enabled by new detection techniques at RHIC’s STAR and PHENIX experiments and by extending RHIC’s world-record energies for the acceleration of proton beams with a distinct spin orientation preference. The results will allow us to tease apart subtle details that were previously inaccessible, and should move the field closer to a quantitative understanding of proton spin structure and dynamics.”

Spin is a quantum property that describes a particle’s intrinsic angular momentum. Like charge and mass, it’s part of a particle’s identity, whose magnitude is the same for all particles of a given type. But unlike charge and mass, spin has a direction that can be oriented differently for individual particles of a given species. The interactions among particles inside atoms, nuclei, and protons depend critically on their relative spin orientations, with influence on a wide range of electrical, magnetic, optical, and other properties of matter. Yet despite the fact that proton spin is used in everyday applications like magnetic resonance imaging (MRI), exactly how — and how much — the individual particles that make up protons contribute to spin remains a mystery.

PHENIX Detector

Scientists know that the quarks inside a proton each have their own intrinsic spin. But numerous experiments have confirmed that a directional preference among all these quark spins can account for only about 25 percent of the proton’s total spin. RHIC was built with the ability to collide polarized protons — protons whose spins could be aligned in a controlled way — so scientists could probe other factors that might account for the “missing” spin. Much of the equipment needed to realize this unique capability was provided by the RIKEN Institute of Physical and Chemical Research of Japan, whose researchers form a critical part of the international collaborations carrying out this work.

After beginning polarized proton collisions at RHIC late in 2001, the first place the scientists looked for the missing spin was the gluons, the particles that hold a proton’s quarks together via the strong force.

“The shock so far has been that we haven’t found gluons carrying much of the spin,” said PHENIX spokesperson Barbara Jacak, a physicist at Stony Brook University. Measurements from the STAR detector agree. After several polarized proton runs at various energies, RHIC data suggest with more and more certainty that gluons contribute much less than originally speculated to proton spin, so the source of the spin still remains a mystery.

The scientists acknowledge that they haven’t been able to look at all the gluons, particularly those that carry tiny fractions of the proton’s overall momentum. “It’s like we’re looking for missing keys under a narrow-focus street lamp, and we’d like a lamp with broader illumination,” Jacak said.

But as they continue to work on that part of the puzzle, they also have a new way to look at spin.

Thanks to new detection techniques and the ability to run polarized proton collisions at very high energies — 500 GeV, or 500 billion electron volts — RHIC scientists at both PHENIX and STAR are able to directly probe the polarization contributions from different flavored quarks (known by the names “up” and “down”) inside protons for the first time.

“All of the earlier measurements that attempted to separate quark spin contributions according to flavor were done indirectly, and they looked primarily at the contribution of the three leading, or valence, quarks in the proton,” said Bernd Surrow, a Massachusetts Institute of Technology physicist and deputy spokesperson of the STAR collaboration. “This new method of measuring W bosons gives us direct access to quarks known as ‘sea quarks,’ which wink in and out of existence as gluons split and reform within the protons.”

Sea quarks are always produced in quark/antiquark pairs and have exceedingly short lifetimes. But at the very high energies achieved in RHIC’s colliding proton beams, these fleeting quarks and antiquarks can collide, or interact, to produce relatively heavy W bosons. So far, RHIC’s experiments have detected Ws by looking for electrons and positrons (positively charged electrons) that form as the Ws decay. The charge of the decay products — whether electrons or positrons — directly reflects the charge of the Ws, which in turn tells what flavor of antiquarks were involved in the collision — whether anti-up or anti-down.

By comparing the number of Ws produced when bunches of RHIC’s colliding protons are polarized in the direction of the beam’s motion with the number produced when the protons are polarized in the opposite direction, the scientists can directly measure the degree to which the antiquark spins point in a preferred direction with respect to the overall proton spin. This robust measurement technique relies on a fundamental, and very well understood, property of the weak interaction by which the Ws are produced, namely, its extreme violation of mirror symmetry.

“Observation of this extreme effect in weak interactions for the first time in polarized proton-proton collisions at RHIC is itself a major milestone,” said Hideto En’yo, director of the RIKEN Nishina Center for Accelerator-Based Science, which established the RIKEN-BNL Research Center (RBRC) to nurture a new generation of physicists interested in studying the strong force and spin physics at RHIC. “It is gratifying to see our large investments in polarization equipment pay off with such large and cleanly interpretable spin effects.”

“You would think you would get equal numbers of anti-up and anti-down quarks inside a proton. But previous experiments have shown that they are very different,” Surrow said. “That means there is a lot of uncertainty about the underlying mechanism of how these sea quarks pop in and out of existence. It also indicates that the different flavors may behave differently in terms of how they contribute to spin.”

Added Jacak, “Understanding these differences won’t by itself solve the spin mystery, but it will give us a clearer picture of one piece of the puzzle, the sea quark contribution.”

Explore further: New microscope collects dynamic images of the molecules that animate life

More information: PHENIX paper, Phys. Rev. Lett. 106, 062001 (2011)
STAR paper, Phys. Rev. Lett. 106, 062002 (2011)

Related Stories

How does the proton get its spin?

Feb 17, 2010

(PhysOrg.com) -- At a meeting this week of the American Physical Society in Washington, MIT Associate Professor of Physics Bernd Surrow reported on new results from the STAR experiment at the Relativistic ...

Seeking Answers to the Puzzle of Proton Spin

Apr 24, 2006

Thanks to a series of machine upgrades, researchers at the Relativistic Heavy Ion Collider (RHIC), the newest and largest particle accelerator at the U.S. Department of Energy's Brookhaven National Laboratory, ...

eRHIC gets to the heart of the matter

Apr 26, 2006

At the U.S. Department of Energy's Brookhaven National Laboratory, scientists have proposed a new way of studying the structure of matter down to a level never before observed. Their proposal is the "eRHIC" ...

Protons - Everything Revolves Around Spin

Dec 17, 2007

Current understanding of the spin structure of protons has been summarised in a single book for the first time. The book examines attempts to solve one of the greatest puzzles of physics. Models and experiments ...

Moving Quarks Help Solve Proton Spin Puzzle

Sep 11, 2008

(PhysOrg.com) -- New theory work at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility has shown that more than half of the spin of the proton is the result of the movement of its building blocks: ...

Recommended for you

Cooling with molecules

Oct 22, 2014

An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 15, 2011
Maybe the standard model of the proton is too complex, since it can't explain the very simple spin of the proton? This spin is exactly 1/2, which is also the spin of the electron, the positron, and the neutron!

My guess is that this spin originates from a similar structure in all this particles, and not that, by extreme chance, fundamentally different explanation in hadrons and leptons arrive at it's specific value...
not rated yet Feb 16, 2011
To bad the standard model works so well, eh?

Hopefully we can start finding where it is severly defecient enough to clue us in to what elements we got wrong. I suspect it will be in the category of how many macro-micro dimensions there really is, and is there really more components to relativity equations that we just don't know is there because of scale issues.
not rated yet Feb 16, 2011
I suspect it will be in the category of how many macro-micro dimensions there really is, and is there really more components to relativity equations that we just don't know is there because of scale issues.
You are thinking of the degrees of freedom given by additional, compact dimensions which would lead to a kind of diffusion of the gluons' spin similar to the diffusion speculated for gravity causing it's apparent weakness?
not rated yet Feb 16, 2011
And why gravity is so "weak".