New images show cloud exploding from Sun ripples like clouds on Earth

Feb 04, 2011

(PhysOrg.com) -- Physicists, led by a researcher at the University of Warwick, studying new images of clouds of material exploding from the Sun have spotted instabilities forming in that exploding cloud that are similar to those seen in clouds in Earth’s atmosphere.

These results could greatly assist physicists trying to understand and predict our Solar System’s “weather”.

The researchers, led by of the Center for Fusion Space and Astrophysics, at the University of Warwick’s Department of Physics, made their discovery when examining new images of clouds of material exploding from the known as coronal mass ejections (CMEs). These images were provided by the Atmospheric Imaging Assembly (AIA) experiment on NASA’s Solar Dynamics Observatory (SDO). SDO was been launched last year and provides unprecedented views of the Sun in multiple temperatures.

The new SDO/AIA observations provided images of coronal mass ejections in the extreme ultra violet at a temperature that was not possible to observe in previous instruments – 11 million Kelvin. On examining these images the Warwick researchers spotted a familiar pattern of instability on one flank of an exploding cloud of solar material that closely paralleled instabilities seen in ’s clouds and waves on the surfaces of seas.

When observed these Kelvin-Helmholtz (or KH) instabilities appear to roll up into growing whirls at boundaries between things moving at different speeds, for instance the transition between air and water or cloud. The difference in speeds produces the boundary instabilities.

Similar conditions can occur when one looks at the magnetic environment of the path of these coronal mass ejections as they travel through the solar corona. The difference in speed and energies between the two creates the very similar KH instabilities that we can observe in clouds.

While KH instabilities have been predicted or inferred from observations as happening within the solar system’s weather this is the very first time they have been directly observed in the corona. What makes this observation even more interesting is that the instabilities appear to form and build on one flank of the CME. This may explain why CMEs appear to bend and twist as these instabilities build, and cause drag, on one side of the cloud. This effect will be the next focus for the University of Warwick led research team.

University of Warwick researcher Dr. Claire Foullon said: “The fact that we now know that these KH instabilities in CMEs are so far only observable in the extreme ultra violet, at a temperature of 11 million Kelvin, will also help us in modelling CME behavior”

“This new observation may give us a novel insight into why these CMEs appear to both rotate, and be deflected away from following a simple straight path from the surface of the Sun. If the instabilities form on just one flank they may increase drag one side of the CME causing it to move slower than the rest of the CME.”

Explore further: Lockheed Martin successfully mates NOAA GOES-R satellite modules

More information: Dr. Foullon and her co-researchers have outlined their observations and detailed modelling of how they believe this phenomenon occurs in a paper just published in Astrophysical Journal Letters entitled Magnetic Kelvin-Helmholtz Instability at the Sun by Dr. Claire Foullon, et al. Preprint.

Related Stories

Solar observation mission celebrates 15 years

Dec 03, 2010

On December 2, 1995, the Solar and Heliospheric Observatory or SOHO was launched into space from Cape Canaveral aboard an Atlas IIAS rocket. The joint ESA/NASA project began its work observing the sun at a ...

First ever whole sun view coming soon from STEREO

Jan 31, 2011

"For the first time in the history of humankind we will be able to see the front and the far side of the sun ... Simultaneously," Madhulika Guhathakurta told Universe Today. Guhathakurta is the STEREO Program ...

Understanding coronal mass ejections

Oct 29, 2010

(PhysOrg.com) -- The corona of the sun is the hot (over a million kelvin), gaseous outer region of its atmosphere. The corona is threaded by intense magnetic fields that extend upwards from the surface in ...

STEREO Reveals the Anatomy of a Solar Storm in 3D

Apr 28, 2009

(PhysOrg.com) -- Observations from NASA's twin Solar Terrestrial Relations Observatory (STEREO) spacecraft have allowed scientists to reveal for the first time the speed, trajectory, and three-dimensional shape of solar explosions ...

Recommended for you

Winter in the southern uplands of Mars

11 hours ago

Over billions of years, the southern uplands of Mars have been pockmarked by numerous impact features, which are often so closely packed that they overlap. One such feature is Hooke crater, shown in this ...

Five facts about NASA's ISS-RapidScat

11 hours ago

NASA's ISS-RapidScat mission will observe ocean wind speed and direction over most of the globe, bringing a new eye on tropical storms, hurricanes and typhoons. Here are five fast facts about the mission.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

vidyunmaya
1 / 5 (3) Feb 05, 2011
A clear Science base that helps next dimensional knowledge- Cosmology Vedas Interlinks these fields
omatumr
1 / 5 (4) Feb 05, 2011
Neutron repulsion in the solar core generates the bulk of the Sun's energy, but ~35% is generated by fusion of the waste product - Hydrogen.

youtube.com/watch?v=GOLld5PR4ts

With kind regards,
Oliver K. Manuel
Former NASA Principal
Investigator for Apollo
omatumr
1 / 5 (2) Feb 05, 2011
See: arxiv.org/pdf/astro-ph/0609509v3