New insights into sun's photosphere reported

Jan 10, 2011
The primary mirror of the new solar telescope at Big Bear Solar Observatory offers the highest power resolution ever available from a land-based telescope. To demonstrate this power, solar granulation covering a field of 12,000 by 12,000 miles or 19,000 by 19,000 kilometers is shown. Bright points appear side-by-side in dark lanes between granules. These bright points are believed to be associated with magnetic field concentrations on the Sun and are 50 miles in diameter. If you were to view an equivalent image on earth, you’d need an instrument that would allow you to see a row of dimes from a distance of more than 20 miles. Tick marks are separated by intervals of 620 miles or 1000 kilometers. Credit: BBSO/NJIT

NJIT Distinguished Professor Philip R. Goode and the research team at Big Bear Solar Observatory (BBSO) have reported new insights into the small-scale dynamics of the Sun's photosphere. The observations were made during a period of historic inactivity on the Sun and reported in The Astrophysical Journal. The high-resolution capabilities of BBSO's new 1.6-meter aperture solar telescope have made such work possible.

"The smallest scale photospheric magnetic field seems to come in isolated points in the dark intergranular lanes, rather than the predicted continuous sheets confined to the lanes," said Goode. "The unexpected longevity of the bright points implies a deeper anchoring than predicted."

Following classical Kolmogorov turbulence theory, the researchers demonstrated for the first time how photospheric plasma motion and magnetic fields are in equipartition over a wide dynamic range, while unleashing energy in ever-smaller scales.

This equipartition is one of the basic plasma properties used in magnetogydrodynamic models. "Our data clearly illustrates that the Sun can generate magnetic fields not only as previously known in the convective zone but also on the near-surface layer. We believe small-scale turbulent flows of less than 500 km to be the catalyst," said NJIT Research Professor Valentyna Abramenko at BBSO.

Tiny jet-like features originating in the dark lanes surrounding the ubiquitous granules that characterize the were also discovered. Such small-scale events hold the key to unlocking the mystery of heating the , the researchers said. The origins of such events appear to be neither unequivocally tied to strong concentrations, nor associated with the vertex formed by converging flows.

"The solar chromosphere shows itself ceaselessly changing character with small-scale energetic events occurring constantly on the solar surface, said NJIT Research Professor Vasyl Yurchyshyn, also at BBSO. Such events suggest a similarity of magnetic structures and events from the hemisphere to its granular scales. The researchers hope to establish how such dynamics can explain the movement underlying convective flows and turbulent magnetic fields.

The telescope is the crown jewel of BBSO, the first facility-class solar observatory built in more than a generation in the U.S. The instrument is undergoing commissioning at BBSO. Since 1997, under Goode's direction, NJIT has owned and operated BBSO, located in a clear mountain lake.

The mountain lake is characterized by sustained atmospheric stability, which is essential for BBSO's primary interests of measuring and understanding solar complex phenomena utilizing dedicated telescopes and instruments.

The images were taken with the new instrument with atmospheric distortion corrected by its 97 actuator deformable mirror. By the summer of 2011, in collaboration with the National Solar Observatory, BBSO will have upgraded the current adaptive optics system to one utilizing a 349 actuator deformable mirror.

The new telescope began operation in the summer of 2009, with support from the National Science Foundation (NSF), Air Force Office of Scientific Research, NASA and NJIT. Additional NSF support was received a few months ago to fund further upgrades to this new optical system.

The telescope will be the pathfinder for an even larger ground-based telescope, the Advanced Technology Solar Telescope (ATST), to be built over the next decade. NJIT is an ATST co-principal investigator on this NSF project.

Scientists believe that magnetic structures like sunspots hold the key to space weather. Such weather, originating in the Sun, can affect Earth's climate and environment. A bad storm can disrupt power grids and communication, destroy satellites and even expose airline pilots, crew and passengers to radiation.

The new telescope now feeds a high-order adaptive optics system, which in turn feeds the next generation of technologies for measuring magnetic fields and dynamic events using visible and infrared light. A parallel computer system for real-time image enhancement highlights it. Goode and his research team, who study solar magnetic, are expert at combining BBSO ground-based data with satellite data to determine dynamic properties of the solar magnetic fields.

Explore further: Monster galaxies gain weight by eating smaller neighbors

More information: http://iopscience.iop.org/2041-8205/714/1/L31

Provided by New Jersey Institute of Technology

5 /5 (1 vote)

Related Stories

New sun images from NJIT's Big Bear Solar Observatory

Aug 24, 2010

NJIT Distinguished Professor Philip R. Goode and the Big Bear Solar Observatory (BBSO) team have achieved "first light" using a deformable mirror in what is called adaptive optics at Big Bear Solar Observatory ...

Big Bear Solar Observatory captures sun's magnetic field

May 19, 2009

NJIT's new 1.6-meter clear aperture solar telescope—the largest of its kind in the world—is now operational. The unveiling of this remarkable instrument—said to be the pathfinder for all future, large ...

NSF awards NJIT physicist $832,927 to study radio waves

Sep 27, 2004

Solar physicists want to know more about the sun's magnetic fields because they are cited as the cause behind potentially damaging outbursts such as solar flares and coronal mass ejections. Such ejections sometimes throw ...

Science with the solar space observatory Hinode

Mar 20, 2008

The solar space observatory Hinode was launched in September 2006, with the name "Hinode" meaning sunrise in Japanese. The Hinode satellite carries a solar optical telescope (SOT), an X-ray telescope (XRT), ...

Sun's magnetic building blocks revealed by SUNRISE

Nov 12, 2010

(PhysOrg.com) -- Scientists from the Max Planck Institute for Solar System Research (MPS) in Germany have now for the first time uncovered and characterized the smallest building blocks of the Sun’s magnetic ...

Recommended for you

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

Glowing galaxies in telescopic timelapse

Sep 17, 2014

We often speak of the discoveries and data flowing from astronomical observatories, which makes it easy to forget the cool factor. Think of it—huge telescopes are probing the universe under crystal-clear ...

User comments : 0