Mosquito-repelling light barriers show promise in reducing spread of malaria

Dec 23, 2010 By Beth Kwon

( -- As an experimental physicist, Szabolcs Marka uses data analysis and diagnostics to enhance the reach of laser equipment to detect cosmic gravitational waves. Now he is using his expertise to target something far more earthbound: the common mosquito.

Márka is developing a " shield" consisting of light barriers that can repel mosquitoes by throwing off the insects’ ability to navigate and detect humans via light and heat. His efforts have been rewarded with a $1 million grant from the Bill & Melinda Gates Foundation, one of whose missions is to eradicate malaria. The two-year Grand Challenges Explorations grant is Márka’s second from the foundation, making him one of only five grantees to receive the additional funding to continue his promising work. He was awarded an initial $100,000 in 2008.

“Fundamental science—astrophysics, relativity, gravity—is like art,” says Márka, an associate professor of physics. “Is it beautiful? Yes. Is it useful? Yes, but rarely directly.” So as he advanced in his physics studies, first as a Ph.D. student at Vanderbilt University and then a post-doc at California Institute of Technology, he wondered how to apply his expertise to something that could directly help people. “I wanted to do something that improves the lives of people and is important for humanity right now,” he says.

Márka is from Hungary, and he recalled that one of his college dorm mates at Kossuth Lajos University had contracted a fatal case of malaria on a visit to Uganda. He knew the impact of the disease in Africa, where it accounts for 20 percent of all childhood deaths. A father of four, Márka wondered, if he lived in Africa, how many of his children would survive early childhood. After the basic idea was analyzed with his research partners at Columbia—his wife, associate research scientist Zsuzsa Márka, and physics graduate student Imre Bartos—they started experimenting with mosquitoes’ sensory perception. The team is working to develop a device that projects a light barrier that can be strategically positioned by a bed, window or door—any place mosquitoes can hide. “Light is very easy to manipulate and shape to many geometries with optics,” Márka says.

The leap from black holes to insect-guiding lasers isn’t as improbable as it might sound at first. “People concentrate more on studying mosquitoes’ olfactory or chemical sensors, but light or heat seemed like an interesting area,” he says. “Overloading, damaging or confusing this sensory system can prevent mosquitoes from reaching their prey.”

On a recent day in his lab in Pupin Hall, Márka placed mosquitoes in a test chamber through which he and his team shot an infrared light ray. The mosquitoes, unaware of the barrier, flew toward it but stopped and turned back upon reaching it. “The mosquitoes are probably scared,” Márka explained. “They could go through the light barrier without getting hurt, but they don’t. That’s the beauty of it because you don’t have to necessarily kill them. You just make them go away.”

While a field prototype for the anti-mosquito light barrier is probably several years away, Márka’s team is studying variables such as shape, intensity, color and their effects on . Since all insects have highly developed sensory perception, Márka’s research could be applied to other insects like flies, wasps or even bedbugs.

Building things and solving problems is hardly new for Márka. As a child growing up in Hungary, he constantly pestered his parents, both high schools teachers, with questions; in response, they simply handed him science textbooks. He made his first telescope from scratch at age 13, and today continues to come up with ideas and plans in his spare time for inventions that could rectify “things that are not right,” as he puts it. One example: a stroller that goes up the stairs. The motivation is part problem-solving, part fun.

“Wherever I look I see new ideas and possibility for progress,” he says. “Some turn out to be impossible, some are prohibited by the economy, but some do work. These are worth thinking of.”

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

add to favorites email to friend print save as pdf

Related Stories

Modern society made up of all types

Nov 04, 2010

Modern society has an intense interest in classifying people into ‘types’, according to a University of Melbourne Cultural Historian, leading to potentially catastrophic life-changing outcomes for those typed – ...

Health-conscious future could stem from smartphones

Dec 14, 2010

The latest smartphones are equipped with a range of technologies that can pinpoint your location. It's only a matter of time before they'll also be able to detect your every movement, says Reetika Gupta, assistant professor ...

Broken bones and medication

Oct 05, 2010

Although one in four women over 50 develops osteoporosis, most are unaware they have the disease — something Professor Suzanne Cadarette would like to change.

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 26, 2010
I already heard of a better invention by some guy.
He calls them 'screens' says they are cheaper and more realiable than even lasers!