Simple rubber device mimics complex bird songs

November 21, 2010

For centuries, hunters have imitated their avian prey by whistling through their fingers or by carving wooden bird calls. Now a team of physicists at Harvard University in Cambridge, Massachusetts, has reproduced many of the characteristics of real bird song with a simple physical model made of a rubber tube.

"We wanted to know if you [could] build a simple device, which has minimal control but reproduces some non-trivial aspects of bird song," says L Mahadevan, a professor at Harvard. The work is being presented today at the American Physical Society Division of Fluid Dynamics meeting in Long Beach, CA.

Bird song -- a complex sound full of intricate patterns and rich harmonics -- has long been studied by neuroscientists. Their research has explained much about how young birds learn these songs from adults and the complex neurological changes that allow them to control their voices.

But Aryesh Mukherjee, a graduate student in Mahadevan's laboratory, suggests that this neural control need not be as complicated as it could be. He suspects that the physics of a bird's vocal tract could explain much of the complexity of its voice, even with relatively simple neural control.

His bird call device consists of an air source, which creates a flow through a stretched rubber tube (modeled after a bird's ), and a linear motor that presses on the tube in a fashion analogous to a contracting muscle.

"Using this very simple device that pokes a tube, I see these beautiful sounds being produced without a sophisticated controller," says Mukherjee.

When analyzed on a , the harmonics and other characteristics of the sounds made by the physical model closely resemble the songs of a .

Another researcher in the lab, Shreyas Mandre, now an assistant professor at Brown University, is building mathematical models that seek to capture some of the underlying principles. His model, which represents the voice as a stretched string with dampened vibrations, creates digital bird calls that are also very similar to the real thing.

"Once we understand the physics better, we'll be able to mimic the sound much better," says Mandre.

The principles underlying the models aren't limited to single species of birds. The researchers believe that -- with a few tweaks -- their models could mimic a variety of bird calls.

Explore further: Birds' brains reveal source of songs

More information: The presentation, "Bird song: in vivo, in vitro, in silico" is on Sunday, November 21, 2010. Abstract:

Related Stories

Birds' brains reveal source of songs

April 28, 2005

Scientists have yearned to understand how the chirps and warbles of a young bird morph into the recognizable and very distinct melodies of its parents. Neuroscientists at the McGovern Institute for Brain Research at MIT now ...

Chickadees Tweet About Themselves

April 28, 2010

A short tweet from a chickadee can tell other birds their sex, species and geographic location, according to new research.

Recommended for you

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.