Revealing a missing link

Nov 12, 2010
Fluorescence experiments in mouse cells demonstrate that hnRNP U expression is essential to the proper localization of Xist RNA. Arrowheads indicate cells with reduced expression of hnRNP U (purple), resulting in diffuse distribution of Xist (green) rather than the tight X chromosome-associated clusters seen in cells expressing hnRNP U (purple). Credit: 2010 Shinichi Nakagawa

When it comes to genes, it’s definitely possible to have too much of a good thing. Accordingly, mammalian females have a mechanism that randomly inactivates one of the two X sex chromosomes within each somatic cell nucleus, ensuring that X-linked genes are represented to the same extent as in their single-X-bearing male counterparts.

This process is executed by the product of the Xist gene. Although messenger RNAs typically get exported to the cytoplasm to produce protein, Xist RNA remains in the nucleus and accumulates along the surface of the X chromosome that is to be inactivated, and new findings from a team led by Shinichi Nakagawa at the RIKEN Advanced Science Institute in Wako have provided valuable insights into the mechanism behind this unusual localization.

Their screen of RNA-binding factors revealed a central role for heterogeneous ribonuclear protein U (hnRNP U) in regulating Xist distribution, and this RNA was scattered diffusely throughout the nuclei of in which hnRNP U levels were artificially reduced. Closer analysis indicated that hnRNP U acts as an intermediary that binds directly to both RNA and chromosomal DNA and tethers the two together. This physical association appears to be essential to X inactivation; although mouse embryonic stem cells lacking hnRNP U successfully initiated the maturation process, they were significantly more likely to exhibit gene activity from both X chromosomes.

Previous investigations have identified a structural role for hnRNP U within the nucleus, and at least one group has demonstrated that this protein tends to cluster near X chromosomes, although this potential aspect of its function remained unaddressed for the better part of decade. Indeed, Nakagawa was taken aback by its involvement in X inactivation. “I was surprised that we came across a factor that has been well-studied in the field of molecular biology rather than a ‘novel’ gene,” he says.

Although Xist is unique in its capacity to engineer the shutdown of an entire chromosome, there are numerous other non-protein-coding RNAs that contribute to the regulation of gene activity at a far smaller scale. Nakagawa hopes that this study will offer a window onto those mechanisms as well. “In most cases these non-coding RNAs control neighboring genes on the same chromosome, in a similar manner to Xist,” he says, “and it is possible that these non-coding RNAs are, in general, also retained around the site of transcription by hnRNP U.”

Explore further: Top Japan lab dismisses ground-breaking stem cell study

More information: Hasegawa, Y., et al.The matrix protine hnRNP U is required for chromosomal localization of Xist RNA. Developmental Cell 19, 469–476 (2010). Article

add to favorites email to friend print save as pdf

Related Stories

Not all clones the same

Nov 05, 2010

Despite their name, not all clones are created equal. This is especially true for the products of somatic cell nuclear transfer (SCNT), which entails the transplantation of the nucleus from a mature somatic ...

Aurora B answers an XIST-ential question

Aug 24, 2009

Early in development, mammalian female cells counteract their double dose of X chromosomes by coating one of them with a large RNA named XIST. The RNA binds to the same X chromosome from which it is transcribed ...

Scientists discover role for dueling RNAs

Nov 16, 2006

Researchers have found that a class of RNA molecules, previously thought to have no function, may in fact protect sex cells from self-destructing. These findings will be published in the November 17 issue of the journal Cell.

'Linc-ing' a noncoding RNA to a central cellular pathway

Jul 29, 2010

The recent discovery of more than a thousand genes known as large intergenic non-coding RNAs (or "lincRNAs") opened up a new approach to understanding the function and organization of the genome. That surprising breakthrough ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.