What changes will nanoelectronics bring to our lives?

Nov 19, 2010 by Annette Ostrand

We are surrounded by nanoelectronics through products such as computers, mobile phones, sensors and electric cars. Nanoelectronics may also grow much stronger in the energy efficiency area in the near future. However, the sustainable growth faces several challenges.

In , miniaturised are integrated on semiconductor chips where the basic element is the transistor. The size of the transistors produced is under 100 nm. Andreas Wild is Executive Director of the ENIAC JU. The task of this public-private partnership is to coordinate European research in nanoelectronics. He sees many interesting changes coming with the evolution of nanoelectronics.

“We have little electronics in the buildings, but the buildings are huge energy consumers. There will be an influx of nanoelectronics that will completely change the ways we are living in and using buildings, making them energy self-consistent, extremely comfortable and adaptable to the needs of the people. The buildings will be able to read how many people are inside, what are they doing, then adjust everything and also give the people a human interface to express their wishes. Rather than pilot projects this will be the norm. Europe has already issued regulations. I believe in the next five to ten years nobody will construct a building that haven’t got these features.”

Laurent Malier, CEO of the research center CEA-Leti in France, highlights another area where nanoelectronics may be prominent. “What we are going to explore more are nanoelectronic devices for biology and healthcare. It could be easy and low cost diagnostics. This is an area of growth in a large perspective,” he said.

The sustainable growth of nanoelectronics faces several challenges. “You see technological challenges, materials, processes and so forth. You see design challenges, how to put together billions of components quickly, reliably and predictably. Then there are systemic challenges, what are the functions that all these billions of are supposed to achieve on every chip and how do they relate to the everyday life of the people using the devices,” Wild said.

Malier sees additional challenges. “One is the compromise between low electrical power consumption and very fast processing capability. The other one is lithography, the capability to reduce the size of features. The third one is to increase complexity with either 3D integration, stacking chips on each other, or integration of new functions.”
We are dependent on nanoelectronic devices and soon we might see a drastic reduction in our energy consumption thanks to the advances in this area.

Explore further: Nanoparticle technology triples the production of biogas

add to favorites email to friend print save as pdf

Related Stories

DARPA grant to fund research into magnetic logic

Nov 17, 2010

(PhysOrg.com) -- The Defense Advanced Research Projects Agency (DARPA) has awarded a team of researchers led by Wolfgang Porod, Freimann Professor of Electrical Engineering and director of the University of Notre Dame’s ...

AMO Manufactures First Graphene Transistors

Feb 08, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 0