What changes will nanoelectronics bring to our lives?

Nov 19, 2010 by Annette Ostrand

We are surrounded by nanoelectronics through products such as computers, mobile phones, sensors and electric cars. Nanoelectronics may also grow much stronger in the energy efficiency area in the near future. However, the sustainable growth faces several challenges.

In , miniaturised are integrated on semiconductor chips where the basic element is the transistor. The size of the transistors produced is under 100 nm. Andreas Wild is Executive Director of the ENIAC JU. The task of this public-private partnership is to coordinate European research in nanoelectronics. He sees many interesting changes coming with the evolution of nanoelectronics.

“We have little electronics in the buildings, but the buildings are huge energy consumers. There will be an influx of nanoelectronics that will completely change the ways we are living in and using buildings, making them energy self-consistent, extremely comfortable and adaptable to the needs of the people. The buildings will be able to read how many people are inside, what are they doing, then adjust everything and also give the people a human interface to express their wishes. Rather than pilot projects this will be the norm. Europe has already issued regulations. I believe in the next five to ten years nobody will construct a building that haven’t got these features.”

Laurent Malier, CEO of the research center CEA-Leti in France, highlights another area where nanoelectronics may be prominent. “What we are going to explore more are nanoelectronic devices for biology and healthcare. It could be easy and low cost diagnostics. This is an area of growth in a large perspective,” he said.

The sustainable growth of nanoelectronics faces several challenges. “You see technological challenges, materials, processes and so forth. You see design challenges, how to put together billions of components quickly, reliably and predictably. Then there are systemic challenges, what are the functions that all these billions of are supposed to achieve on every chip and how do they relate to the everyday life of the people using the devices,” Wild said.

Malier sees additional challenges. “One is the compromise between low electrical power consumption and very fast processing capability. The other one is lithography, the capability to reduce the size of features. The third one is to increase complexity with either 3D integration, stacking chips on each other, or integration of new functions.”
We are dependent on nanoelectronic devices and soon we might see a drastic reduction in our energy consumption thanks to the advances in this area.

Explore further: Project uses crowd computing to improve water filtration

Related Stories

DARPA grant to fund research into magnetic logic

Nov 17, 2010

(PhysOrg.com) -- The Defense Advanced Research Projects Agency (DARPA) has awarded a team of researchers led by Wolfgang Porod, Freimann Professor of Electrical Engineering and director of the University of Notre Dame’s ...

AMO Manufactures First Graphene Transistors

Feb 08, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Recommended for you

Tiny wires could provide a big energy boost

20 hours ago

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough ...

Graphene sheets enable ultrasound transmitters

21 hours ago

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins' ability to use sound to communicate ...

Project uses crowd computing to improve water filtration

Jul 06, 2015

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

Engineering the world's smallest nanocrystal

Jul 06, 2015

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way ...

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.