Sugar-Coated Nanotubes Deliver High-Dose Radiotherapy

July 16, 2010

Starting with simple carbon nanotubes, a team of researchers from the United Kingdom and Spain has developed a sugar-coated nanocapsule that can deliver large doses of radioactivity to tumors. The researchers envision developing a series of nanoscale delivery devices that can target specific organs in the body for radiation therapy or imaging by tinkering with the sugar coating on the nanocapsule.

The research team was led by Benjamin Davis of Oxford University, Kostas Kostarelos of the University of London, and , and Gerard Tobias of the Institut de Cičncia de Materials de Barcelona. The investigators reported the results of their work in the journal Nature Materials.

To create their loaded nanotubes, the investigators prepare a mixture of carbon nanotubes and sodium iodide made from radioactive iodine-125 inside a silica ampoule and heated it to 900° C for four hours. When heated to this temperature, sodium iodide and other metal salts form nanocrystals inside the nanotubes. As the nanotubes cool, their ends self-seal, trapping the radioactive nanocrystals safely inside the carbon containers. After washing the sealed tubes to remove any salts that aren’t encased, the researchers then perform a mild chemical reaction that leaves the end caps unaltered while adding chemical groups to which can attach. In a final step, the scientists add one of many types of sugar molecules to the nanotube surface. In this study, they used a simple sugar known as N-acetyl glucosamine. The researchers note that this synthetic scheme can be used to add other radioactive metal salts to nanotubes and to add other sugar molecules to the surface of the nanotubes.

Numerous tests showed that radioactive payload remained trapped in the sealed nanotubes under a variety of physiological conditions. When injected into tail vein of mice, the researchers were able to image the nanotubes as they accumulated in the lungs using a common imaging technology known as single photon emission computed tomography, or SPECT.

When injected into the body, free sodium iodide normally concentrates in the thyroid gland, not the lungs. The carbon nanotubes did not accumulate in liver, spleen, and kidneys or other organs that usually accumulate injected nanoparticles. The researchers hypothesize that N-acetyl glucosamine targets the nanotubes to the lung by binding to a lung-specific protein known to bind tightly to this sugar.

This work is detailed in a paper titled, “Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging.” An abstract of this paper is available at the journal’s Web site.

Explore further: Polymer Nanotubes as Molecular Probes and DNA Carriers

Related Stories

Polymer Nanotubes as Molecular Probes and DNA Carriers

May 1, 2006

By growing polymers on a porous aluminum oxide template, researchers at the Seoul National University in Korea have fabricated polymer nanotubes to which they can attach two different types of molecules. These new nanoscale ...

Nanotube Coating Meshes with Living Cells

August 14, 2006

Using a polymer coating that mimics part of a cell’s outer membrane, a team of investigators at the University of California, Berkeley, have developed a versatile method for targeting carbon nanotubes to specific types ...

Clemson researchers develop nanotechnology

October 3, 2006

Picture a spider web coated with sugar. But instead of luring in unsuspecting creatures, this spider web pulls in deadly anthrax spores, rendering them harmless.

Nanotubes Enable New Approach to Cancer Radiotherapy

August 22, 2007

Radioactive elements, or radionuclides, are well-established anticancer agents whose main limitation is that they kill healthy cells almost as easily as they do tumors. But because nanoparticles can be targeted to tumors, ...

Carbon Nanotubes Have Room for Multifunctionality

September 27, 2007

In the quest to turn carbon nanotubes from nanoscale wonder into clinically useful drug and imaging agent delivery agents, researchers have often added polymer coatings to the outside of the nanotubes in order to render them ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.