A hop from South America -- tracking Australian marsupials

July 27, 2010

Debates have raged for decades about how to arrange the Australian and South American branches of the marsupial family tree.

While marsupials like the Australian tammar wallaby and the South American opossum seem to be quite different, research by Maria Nilsson and colleagues at the University of Münster, soon to be published in the online open access journal , shows otherwise. Using sequences of a kind of "," the team has reconstructed the marsupial family to reveal that all living Australian marsupials have one ancient origin in South America. This required a simple migration scenario whereby theoretically only one group of ancestral South American marsupials migrated across Antarctica to Australia.

Previous studies theorize that marsupials originated in Australia and that some lineages might have been split when the landmasses separated 80 million years ago. There are few ancient marsupial fossils found in South America or Australia, and previous based on nuclear and have revealed contradictory results about which lineages are most closely related and which split off first.

Nilsson, Jürgen Schmitz, and colleagues screened the genomes of the South American opossum and the Australian tammar wallaby, as well as the DNA of 20 other marsupial species, including the wallaroo, the common wombat, and the marsupial mole for retroposons. Retroposons are unlikely to independently arise in both these species in exactly the same part of the genome by chance and can be used as unambiguous phylogenetic markers. Thus, the overwhelming likelihood is that retroposons shared between species are derived from a long-lost ancestor.

Today's Australian marsupials appear to have branched off from a South American ancestor to form all currently known marsupials—kangaroos, the rodent-like bandicoots, and the . It is still a mystery how the two distinct Australian and South American branches of marsupials separated so cleanly, but perhaps future studies can shed light on how this occurred.

Explore further: Cancer is threatening Tasmanian devils

More information: Nilsson MA, Churakov G, Sommer M, Tran NV, Zemann A, et al. (2010) Tracking Marsupial Evolution Using Archaic Genomic Retroposon Insertions. PLoS Biol 8(7): e1000436. doi:10.1371/journal.pbio.1000436

Related Stories

Cancer is threatening Tasmanian devils

February 1, 2006

Australian scientists say a deadly facial-tumor disease threatening a carnivorous Australian marsupial known as the Tasmanian devil might be infectious.

Evolution of an imprinted domain in mammals

June 3, 2008

The normal human genome contains 46 chromosomes: 23 from the mother and 23 from the father. Thus, you have two copies of every gene (excluding some irregularity in the pair of sex chromosomes). In general, which parent contributes ...

Discovery of the oldest European marsupial

November 4, 2009

(PhysOrg.com) -- Remains of one of the oldest known marsupials have been recovered in Charente-Maritime by a palaeontologist team from the Muséum national d'Histoire naturelle (CNRS, France) and the University of Rennes. ...

Researchers reveal ancient origins of modern opossum

December 16, 2009

A University of Florida researcher has co-authored a study tracing the evolution of the modern opossum back to the extinction of the dinosaurs and finding evidence to support North America as the center of origin for all ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.