Estimating ethanol yields from CRP croplands

March 19, 2010

The scramble to find sufficient land for biofuel production has experts eyeing marginal croplands that have been placed in the Conservation Reserve Program (CRP). Now a study by Agricultural Research Service (ARS) scientists indicates that plant species diversity and composition are key factors in potential energy yield per acre from biomass harvested from CRP land.

Agronomist Paul Adler, who works at the ARS Pasture Systems and Watershed Management Research Unit in University Park, Pa., led this research. Collaborators included University Park agronomist Matt Sanderson; microbiologist Paul Weimer, who works at the ARS U.S. Dairy Forage Research Center in Madison, Wis.; and Kenneth Vogel, who works at the ARS Grain, Forage and Bioenergy Research Unit in Lincoln, Neb.

The team studied composition, species diversity, aboveground biomass, plant chemical composition and potential ethanol yield at 34 warm-season grassland sites across the major ecological regions of the northeastern United States. The sites were a mix of CRP holdings, wildlife refuges, state parks and other public and private lands. The researchers identified 285 plant species, most of them native, on the study sites. Switchgrass, big bluestem and indiangrass, which are all tall native prairie grasses, dominated the vegetation mix. There was an average of 34 different plant species per quarter-acre.

CRP grasslands with the highest number of species had the lowest potential ethanol yields per acre. But sites dominated by a small number of native tall prairie species, such as switchgrass, big bluestem, and indiangrass, had the highest yields.

The results from this study demonstrated that the species composition of plant mixtures used in low-input, high-diversity systems affects both biomass production and chemical composition of the resulting feedstock. Including a large number of species with undesirable fermentation characteristics could reduce ethanol yields.

This extensive study also shows that CRP lands in the northeastern United States with a high proportion of tall native prairie grasses have the potential to produce more than 600 gallons of ethanol per acre. This energy can be produced while maintaining the ecological benefits of CRP grasslands.

Results from this study were published in the journal Ecological Applications.

Explore further: Ecosystems With Many Plant Species Produce More and Survive Threats Better

Related Stories

Researchers pursue grasses as Earth-friendly biofuel

July 21, 2008

( -- At a small site on the Batavia campus of Fermilab, ecologist Julie Jastrow of Argonne National Laboratory pushes the scientific frontier in a new and exciting way: She watches the grass grow.

Which grass is greener to power the bioenergy era?

October 3, 2008

( -- Talk about a field of dreams. Cornell bioenergy plant experts are learning which field grasses are the best candidates for "dedicated energy" crops in the Northeast, considering the region's climate and soil ...

In search of wildlife-friendly biofuels

October 1, 2009

When society jumps on a bandwagon, even for a good cause, there may be unintended consequences. The unintended consequence of crop-based biofuels may be the loss of wildlife habitat, particularly that of the birds who call ...

New Switchgrass Germplasm Collected in Florida

November 26, 2009

( -- Agricultural Research Service (ARS) scientists and cooperators have collected 46 new populations of switchgrass in Florida, adding valuable new accessions to the germplasm collection of this potential bioenergy ...

Recommended for you

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.

Threat posed by 'pollen thief' bees uncovered

October 9, 2015

A new University of Stirling study has uncovered the secrets of 'pollen thief' bees - which take pollen from flowers but fail to act as effective pollinators - and the threat they pose to certain plant species.

Mapping the protein universe

October 9, 2015

To understand how life works, figure out the proteins first. DNA is the architect of life, but proteins are the workhorses. After proteins are built using DNA blueprints, they are constantly at work breaking down and building ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.