Effective Imitation: New chitinase inhibitors

March 8, 2010

(PhysOrg.com) -- The chitin-degrading enzymes known as chitinases are not just important to insects with chitin shells and to their predators, they also seem to be involved in the establishment of parasites in the human body and in asthmatic diseases. An international team led by Stephen G. Withers has now developed a novel chitinase inhibitor. As the researchers report in the journal Angewandte Chemie, the compound imitates the structure of an intermediate formed in the enzymatic degradation of chitin.

Insects, spiders, scorpions, crabs -- many animals have a shell made of chitin. In addition, chitin is found in the cell walls of fungi, dust mites, and various parasites. Chitin is regularly built up and degraded at certain phases in the life cycles of these organisms. Chitin molecules are long chains of nitrogen-containing sugar components, whose degradation is carried out by enzymes in a family known as chitinases.

“Chitinase are potential and ,” explains Withers. “They are also interesting as pharmaceuticals. They could stop the transmission of the to humans and help to fight trichomoniasis infections.” Furthermore, there seems to be a connection between asthma and an elevated level of chitinase-like enzymes in the lungs. Chitinase inhibitors may thus have potential for use in asthma treatment.

The team of scientists from the University of British Columbia (Vancouver, Canada), the University of York (UK), and the State University of New Jersey (USA) has now developed a new group of chitinase inhibitors that are more effective than previous inhibitors. Their synthetic route is relatively simple and is designed to be used on a larger scale as well.

The core structural element is a ring-shaped sugar building block fused with a thiazoline, a five-membered ring made from one nitrogen, one sulfur, and three carbon atoms. “This arrangement imitates a cyclic intermediate formed in the enzymatic degradation of chitin, and docks to the binding sites on chitinase enzymes,” explains Withers. “To augment the inhibitory effect, we added two or three additional sugar units that resemble those in chitin (chitobiose or chitotriose). Further modifications ensure that the inhibitors themselves cannot be degraded, so they remain effective for a long time.” The inhibitors could be a good starting point for the development of novel medications and further research into the role of chitinases in biological systems.

Explore further: New molecule may aid in production of biofuels and fungi-resistant plants

More information: Stephen G. Withers, Chitinase Inhibition by Chitobiose and Chitotriose Thiazolines, Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.200906644

Related Stories

Scientists Plot Genetic Ploy Against Grain Pest

November 3, 2009

(PhysOrg.com) -- Aided by a genomic map of the red flour beetle, Tribolium castaneum, Agricultural Research Service (ARS) and university scientists are plotting a kind of genetic sabotage on the pest’s basic life functions ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.