JPL Airborne Radar Captures Its First Image of Post-Quake Haiti

February 2, 2010
False-color composite image of the Port-au-Prince, Haiti region, taken Jan. 27, 2010 by NASA's UAVSAR airborne radar. The city is denoted by the yellow arrow; the black arrow points to the fault responsible for the Jan. 12 earthquake. Image credit: NASA/JPL

( -- JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) captured this false-color composite image of the city of Port-au-Prince, Haiti, and the surrounding region on Jan. 27, 2010. Port-au-Prince is visible near the center of the image. The large dark line running east-west near the city is the main airport. UAVSAR left NASA's Dryden Flight Research Center in Edwards, Calif., Jan. 25, 2010, aboard a modified NASA Gulfstream III aircraft on a three-week campaign that will also take it to Central America.

Shortly before 5 p.m. local time on Jan. 12, 2010, a magnitude 7.0 earthquake struck southern Haiti. The earthquake's epicenter was about 25 kilometers (15 miles) west-southwest of Port-au-Prince, close to the west (left) edge of this image. The large linear east-west valley in the mountains south of the city is the location of the major active fault zone responsible for the earthquake: the Enriquillo-Plantain Garden fault. The fault extends from the western tip of Haiti past Port-au-Prince into the Dominican Republic to the east of this image. Historical records show that the southern part of was struck by a series of large earthquakes in the 1700s, and geologists believe those were also caused by ruptures on this fault zone.

Satellite interferometric synthetic aperture radar measurements show that the Jan. 12 earthquake ruptured a segment of the fault extending from the epicenter westward over a length of about 40 kilometers (25 miles), leaving the section of the fault in this image unruptured. The earthquake has increased the stress on this eastern section of the fault south of Port-au-Prince and the section west of the rupture. This has significantly increased the risk of a future earthquake, according to a recent report by the U.S. Geological Survey.

The colors in the image reflect the three different UAVSAR radar polarizations: HH (horizontal transmit, horizontal receive) is colored red; VV (vertical transmit, vertical receive) is colored blue; and HV (horizontal transmit, vertical receive) is colored green. Like a pair of Polaroid sunglasses, these images are sensitive to different parts of the radar signal that is reflected back from Earth's surface. The HV polarization is sensitive to volume scattering that typically occurs over vegetation-this gives hills a greenish color. VV polarization is sensitive to surface scattering such as that returned from bare surfaces or water-this gives water a bluish tint. Finally, HH polarization is sensitive to corner-like objects-this gives some urban areas and vegetated regions a reddish tint. The image is roughly 20 kilometers (12.5 miles) wide in the northwest-southeast direction. North is up and radar illumination is from the southeast.

This image will be combined with other images of the same area to be acquired later this month and in the future in order to measure the motion of Earth's surface during the time between images using a technique called interferometry.The interferometric measurements will allow scientists to study the pressures building up and being released on the fault at depth.

UAVSAR is a reconfigurable polarimetric L-band (SAR) specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements.

Explore further: Killer quake struck just below the surface

More information: For more information about radar polarimetry, see

Related Stories

NASA Airborne Radar Studies Haiti Earthquake Faults

January 27, 2010

In response to the disaster in Haiti on Jan. 12, NASA has added a series of science overflights of earthquake faults in Haiti and the Dominican Republic on the island of Hispaniola to a previously scheduled three-week airborne ...

Recommended for you

Can Paris pledges avert severe climate change?

November 26, 2015

More than 190 countries are meeting in Paris next week to create a durable framework for addressing climate change and to implement a process to reduce greenhouse gases over time. A key part of this agreement would be the ...

Revealing glacier flow with animated satellite images

November 26, 2015

Frank Paul, a glaciologist at the University of Zurich in Switzerland, has created animations from satellite images of the Karakoram mountain range in Asia to show how its glaciers flow and change. The images of four different ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.