3D View of the Brain

January 12, 2010

(PhysOrg.com) -- A completely new view of the brains of mice has been achieved by a team headed by R. Graham Cooks at Purdue University (West Lafayette, Indiana, USA). By using mass-spectrometric techniques and imaging processes, they were able to produce three-dimensional images that reflect the spatial distribution of certain biomolecules within substructures of mouse brains, the scientists report in the journal Angewandte Chemie.

Mass spectrometry (MS) is a method by which molecules can be separated and identified by means of their mass. Combination with imaging techniques makes it possible to very specifically represent the two-dimensional distribution of molecules such as drugs, proteins, or lipids on the surface of a biological sample.

Tissue samples need only be prepared following simplified standard histological protocols. For MS analysis, the molecules must then be carried off of the surface, ionized, and converted to the gas phase. For this, the researchers used desorption electrospray ionization (DESI), an ionization technique developed by Cooks’ team a few years ago. Says Cooks: “The particular advantage is that the samples can be examined in the open atmosphere, whereas previous MS imaging techniques required special surface treatment and ionization under vacuum.”

The researchers prepared series of thin sections of mouse brains and analyzed their lipid composition. Two different mass-spectrometric patterns were observed. These could be assigned to the gray and white masses in the brain, which differ in their lipid composition.

By using a set of the 2D data, the researchers constructed 3D images, which each map a specific primary lipid component. By overlaying these 3D data sets, they produced a model of the mouse brain in which anatomical details could be recognized. Other could then also be charted and their 3D images also laid over the model, which makes it possible to determine in which areas of the brain the corresponding substances are primarily found. “We hope to use this to obtain a better understanding of the biochemical processes in the brain,” says Cooks. “In addition to the , we would also like to map other organs in this way.”

Explore further: New chemical-analysis method promises fast results

More information: R. Graham Cooks, Purdue University, Three-Dimensional Vizualization of Mouse Brain by Lipid Analysis Using Ambient Ionization Mass Spectrometry, Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.200906283

Related Stories

New chemical-analysis method promises fast results

March 16, 2006

Researchers at Purdue University have shown how a new ultra-fast chemical-analysis tool has numerous promising uses for detecting everything from cancer in the liver to explosives residues on luggage and "biomarkers" in urine ...

Purdue creates simpler alternative for mass spectrometers

April 14, 2006

Purdue University researchers have developed a relatively simple alternative to sophisticated techniques now used to ionize materials, a critical step needed for chemical analyses involving instruments called mass spectrometers.

Better Insight into Brain Anatomical Structures

May 29, 2007

Magnetic resonance imaging is a very effective method for revealing anatomical details of soft tissues. Contrast agents can help to make these images even clearer and allow physiological processes to be followed in real time. ...

Better insight into brain anatomical structures

June 15, 2007

Magnetic resonance imaging is a very effective method for revealing anatomical details of soft tissues. Contrast agents can help to make these images even clearer and allow physiological processes to be followed in real time. ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.