Tiny Test Tube Experiment Shows Reaction Of Melting Materials at the Nano Scale (w/ Video)

October 15, 2009

(PhysOrg.com) -- Researchers at The University of Texas at Austin have conducted a basic chemistry experiment in what is perhaps the world's smallest test tube, measuring a thousandth the diameter of a human hair.

The nano-scale is so small that a high-power was required to see the experiment.

Made from a thin shell of carbon, the test tube was stuffed with a thread-like crystal (a nanowire) of germanium with a tiny particle of gold at its tip.

The researchers heated the test tube and watched as the gold melted at the end of the nanowire, much like any solid crystal heated above its melting temperature in a glass test tube.

The video will load shortly
Here’s the video of the nano test tube experiment conducted in the lab of Brian Korgel, professor in the Department of Chemical Engineering at The University of Texas at Austin. The video shows gold moving up the length of a germanium nanowire, which was encased in a carbon nano test tube, at high temperature. The image has been magnified 100,000 times and the video’s speed has been greatly increased. Video (c) Tim Green, University of Texas at Austin

"The experiment is relatively simple," said chemical engineer Brian Korgel, whose laboratory conducted it. "Essentially, we observe well-known phenomena, like melting, capillarity and diffusion, but at a much, much smaller scale than has been possible to see before."

Such experiments provide new fundamental insights about how nanomaterials behave, and might be used to create new technologies, from better solar cells to unprecedentedly strong yet light-weight materials to higher performance optical displays and computing technologies.

Korgel and graduate students Vincent Holmberg and Matthew Panthani conducted the experiment, which was reported in the Oct. 16 edition of Science.

During the experiment, the nanowire melted as the temperature rose, but its shape was retained because the carbon test tube maintained its shape.

"In these very small structures, the phase behavior (like its , etc.) can be different than bulk materials and can be size-dependent," Korgel said. "Therefore, if the structure changes when the phase change happens, then the result becomes very difficult to interpret and in fact, may not even represent the true behavior of the system."

The carbon test tube, however, provided a rigid container for studying what happens when materials are heated and melted at the nanoscale.

Source: University of Texas at Austin (news : web)

Explore further: Electron spin and orbits in carbon nanotubes are coupled

Related Stories

Electron spin and orbits in carbon nanotubes are coupled

March 26, 2008

Researchers hoping to use carbon nanotubes for quantum computing -- in which the spin of a single electron would represent a bit of data -- may have to change their approaches, according to new Cornell research.

World's first test-tube baby to be a mom

July 11, 2006

Britain's Louise Brown, who was the world's first test-tube baby and paved the way for millions of infertile couples to have children, is pregnant.

Researchers create the first thermal nanomotor in the world

April 15, 2008

Researchers from the UAB Research Park have created the first nanomotor that is propelled by changes in temperature. A carbon nanotube is capable of transporting cargo and rotating like a conventional motor, but is a million ...

Recommended for you

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

Engineers create prototype chip just three atoms thick

November 29, 2016

For more than 50 years, silicon chipmakers have devised inventive ways to switch electricity on and off, generating the digital ones and zeroes that encode words, pictures, movies and other forms of data.

Nanotechnology a 'green' approach to treating liver cancer

November 29, 2016

According to the American Cancer Society, more than 700,000 new cases of liver cancer are diagnosed worldwide each year. Currently, the only cure for the disease is to surgically remove the cancerous part of the liver or ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.