Mirror images united: Simultaneous binding of both enantiomers of a drug to an enzyme

October 29, 2009

(PhysOrg.com) -- In the binding pockets of enzymes their natural binding partners fit exactly. The principle by which many pharmacological agents work also relies on the fact that these substances fit exactly into the pockets of specific enzymes. Not only the chemical properties but also the shape of the pocket determines if a molecule fits or not.

Just as a left glove doesn’t fit onto a right hand, only one of the mirror images normally fits into the binding site of the enzyme. Molecules that are mirror images are called enantiomers. Rolf Breinbauer, Wulf Blankenfeldt, and Matthias Mentel at the Max Planck Institute for in Dortmund, the University of Leipzig, and the Technical University of Graz (Austria) report a previously unknown binding variation in the journal : for the first time, they have discovered a drug whose two enantiomers can both dock in the pocket of an enzyme at the same time.

In most cases, only one enantiomer of a pharmacon is effective; the other is simply unnecessary ballast. Occasionally, the molecule can even inhibit the activity of the pharmacon, produce counterproductive effects, or cause other undesired side effects. In isolated cases, these can turn out to be dangerous, as was made painfully evident by the thalidomide scandal: Whereas one enantiomer of thalidomide is a well-tolerated, effective sleep-inducing and sedative drug, its mirror image led to severe deformations in the unborn children of pregnant patients.

Consequently, legal regulations today require that only enantiomerically pure medications be brought on the market. In the screening used in pharmaceutical research, mixtures of the two mirror images are first tested together. Subsequently, the binding properties of both forms with the are examined to see which of the two forms is the active one. These experiments have led to the understanding that only a single enantiomer fits into the . In rare cases, it has also been observed that both enantiomers can individually bind to the enzyme, but never at the same time. The scientists were surprised to discover entirely different behavior from enantiomers: Both of the enantiomers of an inhibitor being tested were bound simultaneously in the pocket of the enzyme.

The discovery may open up interesting new possibilities in pharmaceutical research, for example in fragment-based approaches. In this technique, small bioactive molecular fragments are initially sought for use in combination with other fragments to construct effective pharmaceuticals.

More information: Rolf Breinbauer, The Active Site of an Enzyme Can Host Both Enantiomers of a Racemic Ligand Simultaneously, Angewandte Chemie International Edition, doi: 10.1002/anie.200902997

Provided by Wiley (news : web)

Explore further: Metal atom dictates the structure: new concept for the construction of enzyme inhibitors

Related Stories

Eliminating the 'Twin'

August 2, 2006

A University of Arkansas researcher has received a grant to study the dynamics of synthesizing molecules with the same "handedness."

Intrinsic changes in protein shape influence drug binding

August 19, 2009

Computational biologists at the University of Pittsburgh School of Medicine have shown that proteins have an intrinsic ability to change shape, and this is required for their biological activity. This shape-changing also ...

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Trio wins Nobel Prize for mapping how cells fix DNA damage

October 7, 2015

Tomas Lindahl was eating his breakfast in England on Wednesday when the call came—ostensibly, from the Royal Swedish Academy of Sciences. It occurred to him that this might be a hoax, but then the caller started speaking ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.