Protein folding: Diverse methods yield clues

August 6, 2009

(Aug. 6, 2009) -- Rice University physicists have written the next chapter in an innovative approach for studying the forces that shape proteins -- the biochemical workhorses of all living things.

New research featured on the cover of today's issue of the illustrates the value of studying proteins with a new method that uses the tools of to grab a single molecule and pull it apart. The new method helps scientists measure the forces that hold proteins together. The new study contrasted the findings from Rice's method with a different approach that relies on .

"There is an ongoing discussion among scientists about which of these methods is more relevant," said Ching-Hwa Kiang, assistant professor of physics and astronomy at Rice. "What we've found is that each teaches us something different, but the results from the two are similar enough that we can use them together in the future."

Over the past decades, scientists have discovered that misfolded proteins play an important but mysterious role in diseases like Alzheimer's and Parkinson's. As a result, more laboratories like Kiang's are studying how proteins fold and misfold in the hopes of finding clues that could lead to new treatments.

Kiang's team specializes in studying the forces that hold protein strands together. Her group uses atomic force microscopes (AFM), which operate much like phonograph players. The AFM has a needle that's suspended from one end of a cantilevered arm. The needle bobs up and down on the arm, randomly grabbing and lifting proteins. By measuring exactly how much force it takes to pull the strands apart, Kiang's group can learn important clues about the protein's behavior.

Kiang's work was recognized in Small Times magazine's 2007 "Best of Small Tech Awards," but it's not the only way to study protein folding. Other groups use chemicals to determine how much energy it takes to unfold proteins, and Kiang's latest paper looks at similarities and differences between the two methods.

"The chemical denaturant method gives very accurate information about the folded and unfolded state of the protein, and our method gives important information about what happens in between," Kiang said.

Proteins are the workhorses of biology. Each protein is a string of amino acids that are attached end to end, like a strand of pearls. The order of the amino acids comes from DNA blueprints, but the order itself doesn't tell scientists what the protein is designed to do. That's because each protein folds in upon itself shortly after its made, much like a strand of pearls curls up as it's dropped into someone's palm.

Unlike the pearls, which might fall this way or that depending upon how they're dropped, proteins fold the same way every time. That's important, because when they misfold, they cannot function properly and in some cases can make people sick.

"This is fundamental research, but it is very important," Kiang said. "We need to answer to these fundamental questions in order to better understand how folds correctly, which affects people's health."

Source: Rice University (news : web)

Explore further: Engineers squeeze secrets from proteins

Related Stories

Engineers squeeze secrets from proteins

March 21, 2006

Proteins, one of the basic components of living things, are among the most studied molecules in biochemistry. Understanding how proteins form or "fold" from sequenced strings of amino acids has long been one of the grand ...

Unfolding 'nature's origami'

March 2, 2009

Sometimes known as "nature's origami", the way that proteins fold is vital to ensuring they function correctly. But researchers at the University of Leeds have discovered this is a 'hit and miss' process, with proteins potentially ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.