Confined electrons live longer

August 18, 2009
TEM picture of a quantum dot on a gallium arsenide layer. On top is a glue layer due to TEM preparation only. Image: University of Sheffield

Electrons that are trapped in very small structures of only a few nanometer, demonstrate fascinating features. These could be useful for novel computers or semiconductor lasers. Researchers from the University of Sheffield, the Ecole Normale Supérieure in Paris, and the Forschungszentrum Dresden-Rossendorf research center measured for the first time the exact lifetime of excited electrons and published their findings in the journal Nature Materials.

For many applications it is highly desirable that electrons, excited to a higher state, take a long time until they relax back to the ground state. This is a key ingredient for any kind of laser, but also would be desirable for modern applications in quantum information processing (where also the phase coherence should be conserved).

Starting about 20 years ago, researchers have been able to grow so-called on standard semiconductor substrates, such as gallium arsenide (the material used e.g. in CD players). These dots are tiny pyramids, containing typically between 1,000 and 10,000 atoms of a different semiconductor material than the substrate in which they are embedded. As the volumes of the dots are extremely small, the electrons follow quantum-mechanical rules and are supposed to enter only sharply defined energetic states. Furthermore, the electrons are confined in all three directions, and thus they represent a kind of artificial atom, which could become a building block of revolutionary future (opto-)electronic devices.

At that time it was predicted that excited electrons should live for a very long time in these quantum dots, since they hardly find any ways in which to lose their energy. For many years it has remained a puzzle why such long lifetimes, also called the “phonon bottleneck” at that time, were never observed. Further work a few years back has shed new light on this issue: Due to the strong confinement of the electrons, the well known theory describing the loss of energy of electrons to lattice vibrations (phonons) is not applicable, since the form entities which are strongly coupled with phonons, so-called polarons.

Now, taking seriously the predictions of this new theory, researchers from University of Sheffield, UK, Ecole Normale Superieure in Paris, France, and Forschungszentrum Dresden-Rossendorf in Germany have designed quantum dots which allow a rigid test of the theory over a wide parameter range. By making the separation of the energy levels in the quantum dots significantly smaller than the energy of the most important lattice vibration, they were able to observe lifetimes which differed by a factor of thousand for an energy separation which only varied by a factor of two. In numbers, the relaxation time increased from few picoseconds (a millionth of a millionth of a second) to nanoseconds (a thousandth of a millionth of a second), when reducing the electron energy only by half. These long lifetimes, although being of different origin than the originally proposed “phonon bottleneck”, could open a wealth of applications, in particular for terahertz (THz) devices based on quantum dots. The reason for this lies in the fact that the relevant energy level separation is of the order of 10-20 milli-electronvolt (meV), which can be expressed as a frequency of a few THz.

In order to accurately measure these lifetimes, the researchers used a unique type of short-pulse terahertz laser, a so-called free-electron laser (FEL), located at the Forschungszentrum Dresden-Rossendorf. In this free-electron laser high-intensity infrared and terahertz pulses can be generated at a wide range of wavelengths (or frequencies) to fit many kinds of scientific problems in physics, chemistry and biology. In this collaboration, the access of the UK researchers to this FEL facility was supported by the EU through a transnational access programme.

More information: “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range”, E. A. Zibik(1), T. Grange(2), B. A. Carpenter(1), N. E. Porter(1), R. Ferreira(2), G. Bastard(2), D. Stehr(3), S.Winnerl(3), M. Helm(3), H. Y. Liu(4), M. S. Skolnick(1), L. R.Wilson(1), in: Nature Materials, Advance Online Publication (AOP), 16 August 2009, DOI: 10.1038/NMAT2511

Source: Forschungszentrum Dresden Rossendorf

Explore further: Quantum electronics: Two photons and chips

Related Stories

Quantum electronics: Two photons and chips

January 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Laser light in the deep infrared

August 23, 2006

Free-electron lasers (FEL) are large and expensive, but they can deliver unique light for research and applications. On August 21, 2006, at the Forschungszentrum Rossendorf (FZR) in Dresden, Germany, the second undulator ...

Single Atom Quantum Dots Bring Real Devices Closer (Video)

January 27, 2009

(PhysOrg.com) -- Single atom quantum dots created by researchers at Canada’s National Institute for Nanotechnology and the University of Alberta make possible a new level of control over individual electrons, a development ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.