Nanotech particles affect brain development in mice

July 28, 2009

Maternal exposure to nanoparticles of titanium dioxide (TiO2) affects the expression of genes related to the central nervous system in developing mice. Researchers writing in BioMed Central's open access journal Particle and Fibre Toxicology found that mice whose mothers were injected with the nanoparticles while pregnant showed alteration in gene expression related to neurological dysfunction.

Ken Takeda led a team of researchers from the Tokyo University of Science, Japan, who carried out the tests. He said, "Nanotechnology and the production of novel man-made nanoparticles are increasing worldwide. in its nanoparticle form has a high level of photocatalytic activity, and can be used for air and water purification and self-cleaning surfaces. Our findings, however, add to the current concern that this specific nanomaterial may have the potential to affect human health".

For this study, the researchers injected pregnant mice with Ti02 nanoparticles. The brains were obtained from male fetuses/pups on the 16th day of gestation and at several points after birth. Comparing these brains to those of control animals, the researchers were able to demonstrate changes in expression of hundreds of genes. According to Takeda, "Diseases associated with these genes include those we normally consider to develop in childhood, such as autistic disorder, epilepsy and learning disorders, and also others that arise mainly in adulthood or old age, such as Alzheimer's disease, schizophrenia and Parkinson's disease."

Nanotechnology deals with engineering at the molecular scale. Materials reduced to nanoparticles behave in ways dissimilar to those we're used to - altering their reactivity, surface area to volume and any number of other properties. While larger TiO2 particles are commonly used in paints and sunblocks, nanoparticles of TiO2 are specially created for new applications in coatings and self-cleaning surfaces and their effects on living tissue are only beginning to be understood. It should be noted that this data cannot be interpreted as a direct health effect. In addition, the nanoparticles were deliberately injected at a high dose, so the relevance to real-life exposure may be limited.

More information: Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse, Midori Shimizu, Hitoshi Tainaka, Taro Oba, Keisuke Mizuo, Masakazu Umezawa and Ken Takeda, Particle and Fibre Toxicology (in press), www.particleandfibretoxicology.com/

Source: BioMed Central (news : web)

Explore further: Nanotoxicology - new branch of learning

Related Stories

Nanotoxicology - new branch of learning

August 30, 2004

Nanotechnology, the 'science of small things' is set to bring huge advantages in engineering, electronics, medicine and IT-- but the potential threats to health that widespread use of nanoparticles could bring need to be ...

Diesel exhaust inhalation stresses your brain

March 11, 2008

If the smell of diesel exhaust isn't enough to make you avoid getting a lungful, new research now shows that even a short exposure to the fumes can affect your brain. A study published in the open access journal Particle ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.