Scientists uncovered molecular machinery related to stem cell fate

June 26, 2009

The Stowers Institute's Xie Lab has revealed how the BAM protein affects germline stem cell differentiation and how it is involved in regulating the quality of stem cells through intercellular competition. The work was published today by PNAS Early Edition.

Maintaining the proper balance between stem cell self-renewal and differentiation is critical for normal homeostasis. An imbalance between the two can lead to tissue degeneration and to the development of tumors. It has long been known that the BAM protein is necessary for germline stem cell differentiation, but the specific underlying BAM function had remained a mystery until now.

Examining the fruit fly ovary, the Xie Lab established that BAM controls stem cell differentiation and competition by interfering with the function of the protein translation initiation factor eIF4A. EIF4A and BAM antagonize each other to regulate the balance between self-renewal and differentiation by promoting proper expression of E-cadherin — a molecule crucial to the stem cell's ability to attach to its microenvironment (its niche).

"Our studies contribute to the understanding of stem cell fate control," said Run Shen, Ph.D., Postdoctoral Research Associate in the Xie Lab and lead author on the paper. "Many protein translation initiation factors have been reported to be unregulated in different human cancer tissues, so our study may help to understand how translational initiation factors participate in stem cell misregulation and the development of tumors."

"Our studies have established the role of BAM as a protein translational repressor using biochemical and genetic tests," said Ting Xie, Ph.D., Investigator and senior author on the paper. "Translational control is very important in regulating . Many genes critical for stem cell development in the fruit fly germline are suggested to be translational regulators, but their exact roles have not been carefully studied. The knowledge generated by this work and the tests we have developed give us great advantage in tackling many additional questions."

Source: Stowers Institute for Medical Research

Explore further: Scientists demonstrate dual intrinsic and extrinsic control of stem cell aging

Related Stories

Stem cells stand up for themselves

August 25, 2008

Adult stem cells are not pampered pushovers. O'Reilly et al. report that certain stem cells take charge of their surroundings, molding their environment to control their division and differentiation.

Recommended for you

Head and body lice read DNA differently

July 28, 2015

What makes head lice different from body lice had scientists scratching their heads as previous genetic studies failed to find any substantial differences between the two types of lice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.