Stopgap DNA repair needs a second step

May 4, 2009

One can have a dream, two can make that dream so real, goes a popular song. Now a Weizmann Institute study has revealed that it takes two to perform an essential form of DNA repair.

Prof. Zvi Livneh of the Weizmann Institute's Department has been studying for some two decades: 'Considering that the DNA of each cell is damaged about 20,000 times a day by radiation, pollutants and harmful chemicals produced within the body, it's obvious that without effective DNA repair, life as we know it could not exist. Most types of damage result in individual mutations - genetic 'spelling mistakes' - that are corrected by precise, error-free .

Sometimes, however, damage results in more than a mere spelling mistake; it can cause gaps in the DNA, which prevent the DNA molecule from being copied when the cell divides, much like an ink blot or a hole on a book page interferes with reading. So dangerous are these gaps that the cell resorts to a sloppy but efficient repair technique to avoid them: It fills in the missing DNA in an inaccurate fashion. Such repair can save the cell from dying, but it comes at a price: this error-prone mechanism, discovered at the Weizmann Institute and elsewhere about a decade ago, is a major source of mutations.'

In a recent study he conducted with graduate students Sigal Shachar and Omer Ziv, as well as researchers from the US and Germany, Livneh revealed how the error-prone repair works. The team found that such repair proceeds in two steps and requires two types of enzymes, belonging to the family of enzymes called DNA polymerases, which synthesize DNA. First, one repair enzyme, 'the inserter,' does its best to fit in a genetic 'letter' into the gap, opposite the damaged site in the DNA molecule; several enzymes can perform this initial step, which often results in the insertion of an incorrect genetic letter. Next, another enzyme, 'the extender,' helps to restore regular copying of DNA by attaching additional DNA letters after the damaged site; only one repair enzyme is capable of performing this vital second step. These findings were published recently in the EMBO Journal.

Understanding how this major form of DNA repair works can have significant clinical implications. Since defects in this process increase the risk of cancer, clarifying its nuts and bolts might one day make it possible to enhance it in people whose natural DNA repair is deficient. In addition, manipulating this mechanism can improve the effectiveness of cancer drugs. Cancer cells can resist chemotherapy by exploiting their natural repair mechanisms, and blocking these mechanisms may help overcome this resistance, leading to a targeted destruction of the cancerous tumor.

More information:

Source: Weizmann Institute of Science (news : web)

Explore further: Study: Cells prevent DNA repair

Related Stories

Study: Cells prevent DNA repair

November 23, 2005

Scientists say they've discovered cells co-opt the machinery that usually repairs broken strands of DNA to protect the integrity of chromosomes.

New understanding of DNA repair

February 16, 2006

A mechanism by which genes are repaired has been described in detail for the first time. This new understanding may, in the long term, provide the scientific foundation upon which therapies to treat genetic diseases or cancers ...

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

DNA repair mechanisms relocate in response to stress

March 26, 2009

Like doctors making house calls, some DNA repair enzymes can relocate to the part of the cell that needs their help, a collaborative team of scientists at Emory University School of Medicine has found.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.