Graphene Yields Secrets to Its Extraordinary Properties

May 14, 2009
Drawing represents a probe scanning and mapping the atomic contours of graphene, a single layer of carbon atoms arranged in a honeycomb-like array. Simultaneously applying a magnetic field causes electrons (ball) to organize in circular orbits, like a dog chasing its tail. Orbits hold clues to the material’s exotic properties. Credit: Kubista, Georgia Institute of Technology

( -- Applying innovative measurement techniques, researchers from the Georgia Institute of Technology and the National Institute of Standards and Technology have directly measured the unusual energy spectrum of graphene, a technologically promising, two-dimensional form of carbon that has tantalized and puzzled scientists since its discovery in 2004.

Published in this week's issue of Science, their work adds new detail to help explain the unusual physical phenomena and properties associated with graphene, a single layer of arrayed in a repeating, honeycomb-like arrangement.

Graphene's exotic behaviors present intriguing prospects for future technologies, including high-speed, graphene-based electronics that might replace today's silicon-based and other devices. Even at room temperature, in graphene are more than 100 times more mobile than in silicon.

Graphene apparently owes this enhanced mobility to the curious fact that its electrons and other carriers of electric charges behave as though they do not have mass. In conventional materials, the speed of electrons is related to their energy, but not in graphene. Although they do not approach the speed of light, the unbound electrons in graphene behave much like photons, massless particles of light that also move at a speed independent of their energy.

NIST-built STM “shuttle” module contains the atomic-scale position-and-scan system. Graphene sample and probe tip are in the center opening. Shuttle moves between a room-temperature vacuum environment for loading to an ultracold environment for measuring. Model in background shows graphene’s honeycomb structure. Credit: Holmes, NIST

This weird massless behavior is associated with other strangeness. When ordinary conductors are put in a strong magnetic field, charge carriers such as electrons begin moving in circular orbits that are constrained to discrete, equally spaced energy levels. In graphene these levels are known to be unevenly spaced because of the "massless" electrons.

The Georgia Tech/NIST team tracked these massless electrons in action, using a specialized NIST instrument to zoom in on the graphene layer at a billion times magnification, tracking the electronic states while at the same time applying high magnetic fields. The custom-built, ultra-low-temperature and ultra-high-vacuum scanning tunneling microscope allowed them to sweep an adjustable magnetic field across graphene samples prepared at Georgia Tech, observing and mapping the peculiar non-uniform spacing among discrete energy levels that form when the material is exposed to magnetic fields.

The team developed a high-resolution map of the distribution of energy levels in graphene. In contrast to metals and other conducting materials, where the distance from one energy peak to the next is uniformly equal, this spacing is uneven in graphene.

The researchers also probed and spatially mapped graphene's hallmark "zero energy state," a curious phenomenon where the material has no electrical carriers until a is applied.

The measurements also indicated that layers of graphene grown and then heated on a substrate of silicon-carbide behave as individual, isolated, two-dimensional sheets. On the basis of the results, the researchers suggest that graphene layers are uncoupled from adjacent layers because they stack in different rotational orientations. This finding may point the way to manufacturing methods for making large, uniform batches of graphene for a new carbon-based electronics.

More information: D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, P.N. First and J.A. Stroscio. Observing the quantization of zero mass carriers in graphene. Science. May 15, 2009.

Source: National Institute of Standards and Technology (news : web)

Explore further: Speed Bumps Less Important Than Potholes for Graphene

Related Stories

Could Graphene Replace Semiconductors?

September 8, 2008

( -- “People want a faster computer chip,” Philip Kim tells “And it needs to be smaller. But in order to increase the speed of the chip, or to get it smaller, we are approaching a point where ...

A Smarter Way to Grow Graphene

May 14, 2008

Graphene, a sheet of carbon just one atom thick, has many potential uses in the electronics industry, but producing these ideal two-dimensional carbon sheets is very difficult and, as a result, their use has been stifled ...

Light-speed nanotech: Controlling the nature of graphene

January 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production of graphene-based ...

Scientists Develop World's Fastest Graphene Transistor

December 19, 2008

( -- IBM Researchers today announced that they demonstrated the operation of graphene field-effect transistors at GHz frequencies, and achieved the highest frequencies reported so far using this novel non-silicon ...

A new type of spin valve that uses graphene

July 9, 2007

“Some people think that graphene, a form of carbon, is the material of the future,” Allen Goldman tells “It’s of high scientific interest because of its unusual electronic properties.”

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.