A Smarter Way to Grow Graphene

May 14, 2008 By Laura Mgrdichian, Phys.org feature
A schematic rendering of the first graphene layer (G) grown on the ruthenium substrate (Ru). Image courtesy Peter Sutter, Brookhaven National Laboratory

Graphene, a sheet of carbon just one atom thick, has many potential uses in the electronics industry, but producing these ideal two-dimensional carbon sheets is very difficult and, as a result, their use has been stifled so far. But scientists from Brookhaven National Laboratory may have finally found a way around the issue, devising a method to yield high-quality graphene sheets.

The current methods of isolating graphene each have problems. The most common, known as micromechanical cleavage, in which sheets are sheared off of a larger crystal, doesn't reliably produce graphene samples that are large enough for applications.

Another method, in which the atomic structure of a substrate is used to seed the growth of the graphene, known as epitaxial growth, doesn't yield a sample with a uniform thickness of graphene layers, and bonding between the bottom graphene layer and the substrate may affect the properties of the carbon layers.

The Brookhaven group based their technique on this second method, except that they were able to grow the graphene in a controlled, layer-by-layer manner. The substrate they chose is the rare metal ruthenium, and while the bottom graphene layer does interact strongly with it, the next layer up is almost completely detached, only weakly electrically coupled to it, and behaves much like free-standing graphene.

“This second layer retains the inherent electronic structure of graphene,” Brookhaven physicist Peter Sutter, who led the work, told PhysOrg.com. “Thus, our findings may represent a long-sought route toward rational graphene synthesis and the creation of high-quality graphene for applications in electronic devices and sensors.”

Graphene has several properties that make it desirable for electronics, including its very high carrier mobility—that is, electrons in graphene can roam rather freely. Graphene can respond to a single gas molecule, making it very attractive as a detector material for sensors.

The Brookaven group's growth process takes place at high temperatures. To start, the researchers caused carbon atoms to become absorbed within the ruthenium by heating the entire sample to 1150 degrees Celsius (ºC). The sample was then cooled to about 850 ºC, which caused large amounts of the absorbed carbon to rise to the surface of the ruthenium. The carbon formed single-layer lens-shaped islands about 100 micrometers (millionths of a meter) in width, dotting the entire substrate surface.

Eventually, the islands grew into a complete first graphene layer. And at about 80 percent coverage, the growth of the second layer began.

Sutter and his group observed the growth and studied the graphene's properties using various instruments, including a scanning electron microscope and a low-energy electron microscope.

Citation: Peter W. Sutter, Jan-Ingo Flege and Eli A. Sutter Nature Physics advance online publication, 6 April 2008 (DOI:10.1038/nmat2166)

Copyright 2008 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Device uses graphene plasmons to convert mid-infrared light to electrical signals

Related Stories

Graphene helps protect photocathodes for physics experiments

September 17, 2018

Transforming light into electricity is no mean feat. Some devices, like solar cells, use a closed circuit to generate an electric current from incoming light. But another class of materials, called photocathodes, generate ...

The physiology of impenetrable skin: Colossus of the X-men

September 13, 2018

One super-power that gains constant attention is that of impenetrability, a power possessed by superheroes like Luke Cage, Wonder Woman, Superman and Colossus. In a recent paper in Advances in Physiology Education, Barry ...

Illinois engineers protect artifacts by graphene gilding

September 11, 2018

Gilding is the process of coating intricate artifacts with precious metals. Ancient Egyptians and Chinese coated their sculptures with thin metal films using gilding—and these golden sculptures have resisted corrosion, ...

Recommended for you

A new way to count qubits

September 24, 2018

Researchers at Syracuse University, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.

Explainer: The US push to boost 'quantum computing'

September 24, 2018

A race by U.S. tech companies to build a new generation of powerful "quantum computers" could get a $1.3 billion boost from Congress, fueled in part by lawmakers' fear of growing competition from China.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.