A molecular ripcord for chemical reactions

Apr 06, 2009
A catalyst can be switched from a dormant to an active state by pulling on a polymer chain, a "molecular ripcord". Credit: Rint Sijbesma

Researchers at Eindhoven University of Technology (the Netherlands) have developed an entirely new method for starting chemical reactions. For the first time they used mechanical forces to control catalytic activity - one of the most fundamental concepts in chemistry. This allowed them to initiate chemical reactions with mechanical force. This discovery paves the way to developing materials capable of repairing themselves under the influence of mechanical tension. The results of their research will be published online on 6 April 2009 in the new international journal Nature Chemistry.

The research team (Dr. Alessio Piermattei, Dr. Karthik Sivasubramanian and Dr. Rint Sijbesma) of the Institute for Complex Molecular Systems (ICMS) and the Department of Chemical Engineering and Chemistry, both at TU/e, is the first to have demonstrated that a catalyst can be switched from a dormant to an active state (see illustration) by pulling on a polymer chain, a "molecular ripcord." The researchers were able to use this catalyst to initiate a variety of , including polymerizations (formation of polymer chains from small molecular building blocks called monomers).

This discovery paves the way to creating self-repairing materials that strengthen under the influence of mechanical stress. If a material were to tear, for example, this would simultaneously break the metal complex in half, thereby activating the catalyst, and the material would be instantly repaired.

This work will also lead to research into other applications in which it should be possible to turn chemical reactions on and off as desired. Potential applications include the injection molding of plastic objects, where the technique could be used to simplify processing, or microscale chemical synthesis.

The researchers packed a catalytically active metal ion completely in using two molecular caps (ligands). They attached two polymer chains to these caps, creating a long chain with a metal complex in the center. These complexes were dissolved in a liquid that was irradiated with ultrasound, causing bubbles to form in the liquid. When these bubbles imploded, they created an extremely strong current that stretched the chains and ultimately broke its weakest link - the metal complex - in two. The cap on one end was now broken off from the active metal ion, which allowed the metal ion to become catalytically active. In other words, it could now accelerate chemical reactions.

Source: Eindhoven University of Technology

Explore further: Devices designed to identify pathogens in food

Related Stories

Mechanics meets chemistry in new way to manipulate matter

Mar 21, 2007

The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry. Researchers at the University of Illinois at Urbana-Champaign have found a novel way to manipulate matter and drive ...

Modeling the Chemical Reactions of Nanoparticles

Mar 27, 2006

As science enters the world of the very small, researchers will be searching for new ways to study nanoparticles and their properties. For the past several years, scientists at the U.S. Department of Energy’s ...

When liquid crystals with a metal center are 'shaking hands'

Mar 14, 2005

Without liquid crystals (LC's) our cell phones and notebook computers would not be possible, for these compounds keep our display screens flat and lightweight. Being a phase of matter whose order is intermediate between that ...

Recommended for you

Research center develops single-cell analyzer

56 minutes ago

Researchers at Missouri University of Science and Technology have developed a probe capable of detecting signs of disease or environmental change inside a single human cell.

Devices designed to identify pathogens in food

May 27, 2015

Researchers at the National Polytechnic Institute (IPN) in Mexico have developed a technology capable of identifying pathogens in food and beverages. This technique could work in the restaurant industry as ...

Biosensor may improve clinical diagnosis of influenza A

May 27, 2015

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

May 26, 2015

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Use your smartphone for biosensing

May 26, 2015

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

Faster, portable microbial analysis in the field

May 25, 2015

Until recently, it took hours – sometimes days – to analyze biological samples after they were frozen in the field and brought back to the laboratory. But now there is a faster, cheaper and smaller way ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.