Tiny details in three dimensions

Feb 13, 2009
This is a three-dimensional cryo-electron tomogram of two different Borrelia species. Photo: Heidelberg University Hospital

They are borne by ticks and can cause acute and chronic symptoms in joints, muscles and the nervous system - the bacteria that cause Lyme borreliosis, which 80,000 people in Germany contract every year. Heidelberg researchers have now succeeded in identifying their structure more accurately. Using a cryo-tomography microscope, the previously unknown detailed structure of the spirochete bacteria can be shown in three dimensions. One finding - that borrelia types in North America more often affect the joints and in Europe the skin and nervous system as well - seems to stem from the characteristics of their motility system.

The research group headed by Professor Reinhard Wallich, Institute of Immunology, and Dr. Friedrich Frischknecht, Department of Parasitology at the Hygiene Institute of Heidelberg University Hospital has published its findings in cooperation with colleagues from Munich and Freiburg in "Molecular Microbiology". Among other things, the researchers hope to gain new insights into the various clinical symptoms of the disease.

In cryo-electron tomography the organism is shock frozen so that its original condition is retained. Chemical pretreatment, which is often associated with modifying structures and properties, is no longer necessary. Resolution of five to seven nm allows tiniest structures to be viewed. "The new technology is a quantum leap for research, comparable with the step from simple x-ray images to three-dimensional computer tomography in clinical diagnostics," stated Dr. Frischknecht.

The bacteria have developed many strategies to avoid the immune response of humans. Borrelias, like the syphilis pathogens, are spirochetes bacteria. The spiral-shaped, actively motile bacteria have flexible, pliable bodies that are moved with the aid of complex organs, flagella. A correlation between the motility and infectiousness of the pathogen has long been presumed.

The Heidelberg researchers have now for the first time compared the characteristics of the three human pathogenic species that cause Lyme borreliosis that occur in Europe and cause varying symptoms. While in North America, the major symptom is joint inflammation, in Europe, the skin or nervous system may also be affected. With the aid of cryo-tomographic microscopy, they have successfully shown that the three pathogen types have varying numbers of flagella. In addition, structures were identified for the first time that could play an important role in the reproduction of the bacteria.

More information: Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes, Mikhail Kudryashev, Marek Cyrklaff, Wolfgang Baumeister, Markus M. Simon, Reinhard Wallich, Friedrich Frischknecht, Published Online: Feb 4 2009 7:27AM, DOI: 10.1111/j.1365-2958.2009.06613.x

Source: University Hospital Heidelberg

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

A phone with the ultimate macro feature

Apr 29, 2015

If you thought scanning one of those strange, square QR codes with your phone was somewhat advanced, hold on to your seat. Researchers at the University of California, Los Angeles (UCLA) have recently developed ...

Microbes help produce serotonin in gut

Apr 09, 2015

Although serotonin is well known as a brain neurotransmitter, it is estimated that 90 percent of the body's serotonin is made in the digestive tract. In fact, altered levels of this peripheral serotonin have ...

Are bacteria making you hungry?

Dec 19, 2012

Over the last half decade, it has become increasingly clear that the normal gastrointestinal (GI) bacteria play a variety of very important roles in the biology of human and animals. Now Vic Norris of the University of Rouen, ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.