Building a better protein

February 23, 2009

Proteins are widely viewed as a promising alternative to synthetic chemicals in everything from medications to hand lotion. The naturally occurring molecules have been shown to be more efficient and effective than many of the most sophisticated chemical compounds on the market. But outside the controlled confines of the lab bench, proteins quickly change structure, causing irreversible damage to their functionality and often safety.

Scientists are now searching for ways to increase the stability of proteins. In new research published Feb. 5 in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS), Rensselaer Senior Constellation Professor George Makhatadze and his colleagues detail a targeted strategy to substantially increase the thermodynamic stability of nearly any protein, while preserving its unique function. Their redesign technique creates proteins that remain stable at temperatures 10 degrees Celsius higher than normal.

To achieve these results, the researchers used high-powered computers to create new and improved versions of two human enzymes. The enzymes are specific types of protein. The two enzymes in the study vary widely in size and functionality, yet both showed substantial increases in stability without loss of function in the body. This supports the idea that the stability of many other proteins could also be greatly stabilized, according to Makhatadze. The researchers are now looking to use the technique to improve that stability of specific proteins with strong industrial and drug development applications.

They developed a computational approach that altered the proteins' structure and tested it for increased stability. "Our experimental validation of computational results is actually motivated by Thomas Edison, who wrote, 'Until man duplicates a blade of grass, nature will laugh at his so-called scientific knowledge,'" Makhatadze said.

"There are several viable approaches to optimize proteins," Makhatadze added. "Many researchers seek to optimize the protein by changing all types of physical interactions within the computer model at once. Instead, we felt that if we could understand one interaction, we could then use it to our advantage to build on the algorithm and then experimentally prove that that property really exists in the real protein system."

The interaction the researchers focused on was the surface charge of the protein. The investigation of the importance of protein surface structure is a growing area of research within the field. In fact, a 2006 paper in the journal Biochemistry, published by Makhatadze supporting the importance of protein surface structure on stability, was the one of the top five most cited and downloaded papers from the journal that year.

In addition to important potential industrial applications, Makhatadze also believes the research sheds some light on the evolution of proteins. The researchers compared the mutations that they made within the proteins in order to optimize the protein's performance with the mutations naturally occurring in the proteins from the evolutionary distant organisms. Instead of seeing more mutations along with increased performance as with most evolutionary adaptations, the researchers saw that less frequent mutations resulted in a more stable protein. "This suggests that the stability of proteins might not be evolutionarily important," he said. "It appears that as soon as the protein is able to function in given conditions and is stable at a given temperature, anything above that is not really necessary."

Source: Rensselaer Polytechnic Institute

Explore further: The secret to safe DNA repair

Related Stories

The secret to safe DNA repair

November 11, 2015

Michael Hendzel knows all too well that there is little that people can do to control the stability of their genetic code. But he hopes his latest research will help impact this elusive and crucial aspect of medicine. Published ...

Lipids support protein machinery

November 5, 2015

In the membranes of mitochondria, the power stations of the cell, are many different embedded proteins. These proteins perform key functions for the mitochondria. A team led by the biochemist Dr. Thomas Becker from the University ...

Researchers find universality in protein locality

October 29, 2015

A team of researchers has mapped out a universal dynamic that explains the production and distribution of proteins in a cell, a process that varies in detail from protein to protein and cell to cell, but that always results ...

Why some genes are highly expressed

November 5, 2015

The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter. However, these molecular beads, called ...

Molecular motor grows cell's microtubules

October 26, 2015

Motor proteins that pause at the ends of microtubules and produce pushing forces can also stimulate their growth, according to researchers at Penn State. The proteins' function could be a critical component in understanding ...

Recommended for you

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.