Researchers Can Detect Tunnel Excavation With Fiber Optic Cables

Jan 12, 2009
Researchers Can Detect Tunnel Excavation With Fiber Optic Cables
Dr. Assaf Klar of the Technion Faculty of Faculty of Civil and Environmental Engineering is developing a way to detect and pinpoint the excavation of tunnels, such as those used for smuggling weapons into Gaza.

(PhysOrg.com) -- With the same type of fiber optic cables used in telecommunications systems, researchers from the Technion-Israel Institute of Technology have developed a way to detect and pinpoint the excavation of tunnels during times of war, such as those used for smuggling weapons into Gaza. The findings will be presented at the Defense, Security and Sensing Conference of SPIE (an international society advancing light-based research) in April 2009 in Orlando, Florida.

Principal researchers Dr. Assaf Klar and Dr. Raphael Linker, both of the Technion Faculty of Civil and Environmental Engineering, say the system is capable of locating even narrow tunnels at depths greater than 60 feet with a limited number of false alarms.

"Tunnel excavation is accompanied by the release of stresses that cause permanent - though very tiny - displacements and strains in the ground," says Dr. Klar. "If you can measure these strains in the soil with sensitive equipment, you can find the tunnel's location." Tunnel excavation has a distinctive signal that is very different from those of disturbances, he adds.

The research lays the groundwork for the initial stages of an underground fence based on an existing technology called BOTDR (Brillouin optical time domain reflectometry) that makes it possible to measure fiber distortion along 15 miles using one device.

The proposed system is based on "wavelet decomposition" of the continuous BOTDR signal, a process that breaks down the signal profile into simpler shapes, and then filters out any irrelevant signals ("noise"). The signals that remain are then characterized by a neural network that has been trained to locate tunnels using computer simulation of tens of thousands of profiles, including disturbances not related to tunneling (examples include raindrops).

"The ability of the BOTDR approach to supply a continuous profile of soil distortions along the fiber optic line - and the ability of the neural network to identify the relevant profile that characterizes the excavation - are the keys to the system's success," says Dr. Linker.

Provided by Technion-Israel Institute of Technology

Explore further: Research team explores a novel way to fabricate preforms for composites

Related Stories

California farmers agree to drastically cut water use

1 hour ago

California farmers who hold some of the state's strongest water rights avoided the threat of deep mandatory cuts when the state accepted their proposal to voluntarily reduce consumption by 25 percent amid ...

Apple may deliver ways to rev up the iPad, report says

1 hour ago

MacRumors last month said that the latest numbers from market research firm IDC's Worldwide Quarterly Tablet Tracker revealed Apple stayed on as the largest vendor in a declining tablet market. The iPad ...

Recommended for you

Turning traditional textiles smart

10 hours ago

Mexican researcher Paulino Vacas Jacques invented a "motherboard" able to turn textiles smart. This technology could be included in bed sheets to measure the hours slept by a person.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.