Mixing genomics and geography yields insights into life and environment

Jan 22, 2009

In an upcoming issue of Proceedings of the National Academy of Sciences, Yale researchers used newly developed mathematical models to analyze huge amounts of data on physical characteristics such as temperature and salinity in different ocean habitats and metabolic activity in marine micro-organisms.

They were able to see in unprecedented detail how environment influences molecular changes within living organisms. As the technology dubbed "metagenomics" progresses, scientists might be able to detect environmental change or toxic chemicals not simply by using mechanical sensors or monitoring sensor species, but by examining biological changes within tiny organisms, said Mark Gerstein, the Albert L. Williams professor of biomedical informatics and professor of molecular biophysics & biochemistry and computer science.

"Such biosensors are the modern equivalent of canaries in a coal mine,' Gerstein said.

The research team was headed by computational biology and bioinformatics Ph.D. student Tara A. Gianoulis under the laboratories of Gerstein and Michael Snyder, the Lewis B. Cullman professor of molecular, cellular & developmental biology and professor of molecular biophysics & biochemistry, The team incorporated biochemical and environmental data from the previously published Global Ocean Survey, which catalogued information from 40 different aquatic sites. The GOS data effectively doubled the number of known proteins, and through a statistical analysis of these data, the Yale team was able to infer microbial adaptations to the environment.

"The genomics world has developed amazing technology that has captured a tremendous amount of information about living organisms, giving rise to an era of big data," Gerstein said. "Meanwhile, you have this explosion of geo-spatial information from satellites and global sensors. When key data sets connect these two disparate worlds, you find a subtle richness of connections."

Through a complex statistical analysis, the study showed that organisms switched energy conversion strategies depending on the environment, used components of membranes differently, and provided evidence that factors such as metals may play a large role in how micro-organisms adapt to their environments.

Source: Yale University

Explore further: New methods for realistic surface rendering in computer games

Related Stories

Frontier science in ocean-going lab

Apr 21, 2015

Oceanographer Dr Martina Doblin is preparing for one of the most significant explorations of her career. In early June, a mobile laboratory known as the Micro-CSI will leave from Brisbane aboard Australia's ...

Engineers purify sea and wastewater in 2.5 minutes

Apr 17, 2015

A group of Mexican engineers from the Jhostoblak Corporate created technology to recover and purify seawater or wastewater from households, hotels, hospitals, commercial and industrial facilities, regardless ...

Quantum Criticality in life's proteins (Update)

Apr 15, 2015

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The id ...

Recommended for you

America's best teachers get creative

1 hour ago

While U.S. educational policy emphasizes high-stakes testing and scripted lessons, the best teachers in the business are taking creative risks—often drawing from their own interests and hobbies—to help ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.