Mixing genomics and geography yields insights into life and environment

Jan 22, 2009

In an upcoming issue of Proceedings of the National Academy of Sciences, Yale researchers used newly developed mathematical models to analyze huge amounts of data on physical characteristics such as temperature and salinity in different ocean habitats and metabolic activity in marine micro-organisms.

They were able to see in unprecedented detail how environment influences molecular changes within living organisms. As the technology dubbed "metagenomics" progresses, scientists might be able to detect environmental change or toxic chemicals not simply by using mechanical sensors or monitoring sensor species, but by examining biological changes within tiny organisms, said Mark Gerstein, the Albert L. Williams professor of biomedical informatics and professor of molecular biophysics & biochemistry and computer science.

"Such biosensors are the modern equivalent of canaries in a coal mine,' Gerstein said.

The research team was headed by computational biology and bioinformatics Ph.D. student Tara A. Gianoulis under the laboratories of Gerstein and Michael Snyder, the Lewis B. Cullman professor of molecular, cellular & developmental biology and professor of molecular biophysics & biochemistry, The team incorporated biochemical and environmental data from the previously published Global Ocean Survey, which catalogued information from 40 different aquatic sites. The GOS data effectively doubled the number of known proteins, and through a statistical analysis of these data, the Yale team was able to infer microbial adaptations to the environment.

"The genomics world has developed amazing technology that has captured a tremendous amount of information about living organisms, giving rise to an era of big data," Gerstein said. "Meanwhile, you have this explosion of geo-spatial information from satellites and global sensors. When key data sets connect these two disparate worlds, you find a subtle richness of connections."

Through a complex statistical analysis, the study showed that organisms switched energy conversion strategies depending on the environment, used components of membranes differently, and provided evidence that factors such as metals may play a large role in how micro-organisms adapt to their environments.

Source: Yale University

Explore further: The maths of congestion—springs, strings and traffic jams

Related Stories

Bacteria cooperate to repair damaged siblings

May 21, 2015

A University of Wyoming faculty member led a research team that discovered a certain type of soil bacteria can use their social behavior of outer membrane exchange (OME) to repair damaged cells and improve ...

Driest place on Earth hosts life

May 19, 2015

Researchers have pinpointed the driest location on Earth in the Atacama Desert, a region in Chile already recognised as the most arid in the world. They have also found evidence of life at the site, a discovery ...

Phage spread antibiotic resistance

May 15, 2015

Investigators found that nearly half of the 50 chicken meat samples purchased from supermarkets, street markets, and butchers in Austria contained viruses that are capable of transferring antibiotic resistance ...

CLAIRE brings electron microscopy to soft materials

May 14, 2015

Soft matter encompasses a broad swath of materials, including liquids, polymers, gels, foam and - most importantly - biomolecules. At the heart of soft materials, governing their overall properties and capabilities, ...

Ether compounds could work like DNA on oily worlds

May 12, 2015

In the search for life beyond Earth, scientists have justifiably focused on water because all biology as we know it requires this fluid. A wild card, however, is whether alternative liquids can also suffice ...

Recommended for you

Top UK scientists warn against EU exit

May 22, 2015

A group of leading British scientists including Nobel-winning geneticist Paul Nurse warned leaving the European Union could threaten research funding, in a letter published in The Times newspaper on Friday.

How we discovered the three revolutions of American pop

May 22, 2015

Dr Matthias Mauch discusses his recent scientific analysis of the "fossil record" of the Billboard charts prompted widespread attention, particularly the findings about the three musical "revolutions" that shaped the musical la ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.