Structure of enzyme against chemical warfare agents determined

Jan 28, 2009

The enzyme DFPase from the squid Loligo vulgaris, is able to rapidly and efficiently detoxify chemical warfare agents such as Sarin, which was used in the Tokyo subway attacks in 1995.

A detailed understanding of the mechanism by which enzymes catalyze chemical reactions is necessary for efforts aiming to improve their properties. A group of researchers at the University of Frankfurt, the Bundeswehr Institute for Pharmacology and Toxicology in Munich, and Los Alamos National Laboratory in New Mexico, USA, have successfully determined the structure of DFPase using neutron diffraction. They report their findings in the 20 January 2009 issue of the journal Proceedings of the National Academy of Sciences (106(3), 713-718).

The team used the neutron source at Los Alamos National Laboratory, one of only three sources worldwide equipped for protein crystallography. In contrast to structure determination using X-rays, neutrons are able to locate the positions of hydrogen atoms, which make up half of all atoms in proteins, and are crucial for chemical reactions. As X-rays interact with the electron cloud around an atomic nucleus, so heavier elements are more easily seen, while neutrons interact with the atomic nuclei, and atoms in proteins such as hydrogen, oxygen, nitrogen, carbon, and sulfur, all scatter neutrons in a similar manner. Yet despite being so widespread, hydrogen atoms in proteins are quite elusive.

As X-rays interact with the electron cloud around an atomic nucleus, hydrogen atoms, with only one electron, are normally invisible in structures. In contrast, neutrons interact with the atomic nuclei, such that atoms in proteins, hydrogen, oxygen, nitrogen, carbon, and sulfur, all scatter neutrons in a similar manner. The two techniques therefore yield complementary information about a protein structure. This information about hydrogen atoms is therefore essential for a basic understanding of the reaction mechanism of DFPase.

Neutron structures of proteins are quite rare and technically demanding, requiring large crystals and long measurement times. Though the first neutron structure of a protein was reported 40 years ago, in 1969, to date only about 20 unique structures have been solved, out of 50000 entries in the Protein Data Bank. " The effort has been absolutely worth it, " says Junior-Prof. Julian Chen, who published this work together with Dr. Marc-Michael Blum and Prof. Heinz Rueterjans. " Based on the results of this study, we can now create targeted changes to DFPase to augment the activity, as well as diversify the substrate range of the enzyme."

Source: Goethe University Frankfurt

Explore further: Researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion

Related Stories

Physicists find ways to increase antihydrogen production

May 20, 2015

(Phys.org)—There are many experiments that physicists would like to perform on antimatter, from studying its properties with spectroscopic measurements to testing how it interacts with gravity. But in order ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

The dreadful beauty of Medusa

May 20, 2015

Astronomers using ESO's Very Large Telescope in Chile have captured the most detailed image ever taken of the Medusa Nebula. As the star at the heart of this nebula made its transition into retirement, it ...

Recommended for you

New chip makes testing for antibiotic-resistant bacteria faster, easier

13 hours ago

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Researchers find 'decoder ring' powers in micro RNA

15 hours ago

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

DNA mutations get harder to hide

19 hours ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

Use your smartphone for biosensing

21 hours ago

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.