Steampipe keeps electronics cool

December 4, 2008
Diagram of cooling system with air injected directly from below.

( -- The cooling of electronic components is playing an increasing role in the design process of electronic equipment such as mobile telephones, games computers and laptops. Wessel Wits, PhD student at the University of Twente, has developed two innovative concepts for cooling such devices. Patents for both concepts are pending. Wits will be awarded his doctorate on 4 December at the faculty of Engineering Technology.

Electronic components on the printed circuit boards used in electrical devices are becoming smaller and smaller, whilst their performances (must) improve. This means that more heat is released on a continually shrinking surface area.

Diagram of the integrated two-phase heat transport mechanism.

Industry is currently facing two problems in the cooling of electronics: the components on a printed circuit board are so close to one another that there is hardly any room left to cool them individually and the components themselves release so much concentrated heat that the cooling capacity is not strong enough to cool them. Wits looked for solutions to these two problems. In cooperation with Thales Nederland, a company that specializes in developing radar systems, he has developed two new concepts. The first concept cools using air, the second is a closed evaporation system.

Air cooling

The first concept – directly injected cooling – is based on air cooling. Small openings are made on the bottom of the printed circuit board under the electronic components. These ‘inflow openings’ cool the components directly from below. The big advantage of this concept is that it can cool various components independently of one another or simultaneously.

Closed evaporation system

The second concept – integrated heat pipe cooling – is based on the evaporation of liquid in a closed system. This liquid is located in the so-called ‘heat pipe’, a principle that is well-known but that had never been fully integrated in a printed circuit board until now. The liquid evaporates from a capillary structure at the spot where the heat is released. The evaporation withdraws heat locally from the environment. The vapour subsequently flows through the ‘heat pipe’ and condenses at some distance from the electrical component to be cooled. The latent heat is once again converted to perceptible heat at this site. This concept stands out because it is able to transport heat highly efficiently, without a pump or other external energy source.

Compared with current cooling systems, both concepts show promising results in terms of good thermal performance and great flexibility. They also lead to a lighter, compacter electronic product. No new production techniques will have to be developed in order to incorporate these concepts in current printed circuit boards. As a result, time can be gained during production and considerable cost savings will be possible.

Provided by University of Twente

Explore further: Transformation needed in thermal management research

Related Stories

Transformation needed in thermal management research

November 13, 2015

Researchers are recommending changes in how to study rapidly changing temperatures in complex systems such as aircraft and power plants, a transformation that could bring advances for applications ranging from fighter jets ...

Turbine technology re-think aims to boost power production

November 18, 2015

Harnessing the power of wind has long been recognised as an important alternative source of electricity generation. Now, a new European project is aiming to improve the technology and make it even more competitive

Researchers shed new light on the origins of Earth's water

November 12, 2015

Water covers more than two-thirds of Earth's surface, but its exact origins are still something of a mystery. Scientists have long been uncertain whether water was present at the formation of the planet, or if it arrived ...

Calibrating an optical attenuator with few-photon pulses

November 5, 2015

Precise measurements of optical power enable activities from fiber-optic communications to laser manufacturing and biomedical imaging—anything requiring a reliable source of light. This situation calls for light-measuring ...

Liquid cooling moves onto the chip for denser electronics

October 5, 2015

Using microfluidic passages cut directly into the backsides of production field-programmable gate array (FPGA) devices, Georgia Institute of Technology researchers are putting liquid cooling right where it's needed the most ...

Recommended for you

The ethics of robot love

November 25, 2015

There was to have been a conference in Malaysia last week called Love and Sex with Robots but it was cancelled. Malaysian police branded it "illegal" and "ridiculous". "There is nothing scientific about sex with robots," ...

Nevada researchers trying to turn roadside weed into biofuel

November 26, 2015

Three decades ago, a University of Nevada researcher who obtained one of the first U.S. Energy Department grants to study the potential to turn plants into biofuels became convinced that a roadside weed—curly top gumweed—was ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 04, 2008
If only the could be designed to not generate heat in the first place. :(
not rated yet Dec 04, 2008
No heat from components that push electricity through them... :-)

You would have to try something like fiber-optics for all components. Can't remember how far light based logic gates have come recently (especially in size).
not rated yet Dec 05, 2008
Yes, optics, although there may be a heat cap on those, especially as they shrink, or superconduction. Neither of which has progressed far enough to be the silver bullet. :(

However, there is promise in spintronics, which is a rapidly developing field. Forgoes electricity for magnetics!
not rated yet Dec 05, 2008
No new production techniques will have to be developed in order to incorporate these concepts in current printed circuit boards.

Embedding hot liquid channels in printed boards certainly calls for a new technology and will add to the costs.
1 / 5 (1) Dec 05, 2008
Tesla's wireless electrical transmission of energy doesn't produce heat and there is much less resistance (no wires).
not rated yet Dec 05, 2008
"New Scientist reports that the first working superconducting transistor has been created, by researchers at the University of Geneva. Field effect transistors with zero electrical resistance would allow much faster operations. Only drawback is they need to be supercooled, something that may be addressed by improving the materials used."


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.