Solar flare surprise

December 15, 2008
The X9-class solar flare of Dec. 5, 2006, observed by the Solar X-Ray Imager aboard NOAA's GOES-13 satellite. Credit: NOAA's Space Weather Prediction Center

( -- Solar flares are the most powerful explosions in the solar system. Packing a punch equal to a hundred million hydrogen bombs, they obliterate everything in their immediate vicinity. Not a single atom should remain intact. At least that's how it's supposed to work.

"We've detected a stream of perfectly intact hydrogen atoms shooting out of an X-class solar flare," says Richard Mewaldt of the California Institute of Technology. "What a surprise! If we can understand how these atoms were produced, we'll be that much closer to understanding solar flares."

The event occurred on Dec. 5, 2006. A large sunspot rounded the sun's eastern limb and with little warning it exploded. On the "Richter scale" of flares, which ranks X1 as a big event, the blast registered X9, making it one of the strongest flares of the past 30 years.

NASA managers braced themselves. Such a ferocious blast usually produces a blizzard of high-energy particles dangerous to both satellites and astronauts. An hour later they arrived, but they were not the particles researchers expected.

NASA's twin Solar TErrestrial RElations Observatory (STEREO) spacecraft made the discovery: "It was a burst of hydrogen atoms," says Mewaldt. "No other elements were present, not even helium (the sun's second most abundant atomic species). Pure hydrogen streamed past the spacecraft for a full 90 minutes."

Next came 30 minutes of quiet. The burst subsided and STEREO's particle counters returned to low levels. The event seemed to be over when a second wave of particles enveloped the spacecraft. These were the "broken atoms" flares are supposed to produce—protons and heavier ions such as helium, oxygen and iron. "Better late than never," he says.

At first, this unprecedented sequence of events baffled scientists, but now Mewaldt and colleagues believe they're getting to the bottom of the mystery.

First, how did the hydrogen atoms resist destruction?

"They didn't," says Mewaldt. "We believe they began their journey to Earth in pieces, as protons and electrons. Before they escaped the sun's atmosphere, however, some of the protons captured an electron, forming intact hydrogen atoms. The atoms left the sun in a fast, straight shot before they could be broken apart again." (For experts: The team believes the electrons were recaptured by some combination of radiative recombination and charge exchange.)

Second, what delayed the ions?

"Simple," says Mewaldt. "Ions are electrically charged and they feel the sun's magnetic field. Solar magnetism deflects ions and slows their progress to Earth. Hydrogen atoms, on the other hand, are electrically neutral. They can shoot straight out of the sun without magnetic interference."

Imagine two runners dashing for the finish line. One (the ion) is forced to run in a zig-zag pattern with zigs and zags as wide as the orbit of Mars. The other (the hydrogen atom) runs in a straight line. Who's going to win?

"The hydrogen atoms reached Earth almost two hours before the ions," says Mewaldt.

Mewaldt believes that all strong flares might emit hydrogen bursts, but they simply haven't been noticed before. He's looking forward to more X-flares now that the two STEREO spacecraft are widely separated on nearly opposite sides of the Sun. (In 2006 they were still together near Earth.) STEREO-A and –B may be able to triangulate future bursts and pinpoint the source of the hydrogen. This would allow the team to test their ideas about the surprising phenomenon.

"All we need now," he says, "is some solar activity."

For more information about this research, look for the article "STEREO Observations of Energetic Neutral Atoms during the 5 December 2006 Solar Flare" by R. A. Mewaldt et al., in a future issue of the Astrophysical Journal Letters.

For more information about STEREO, please visit: .

Provided by NASA's Goddard Space Flight Center

Explore further: Way cheaper catalyst may lower fuel costs for hydrogen-powered cars

Related Stories

Method could make hydrogen fuel cells more efficient

September 23, 2015

With the growth of wind and solar energy and the increasing popularity of electric vehicles, many people in the U.S. may have forgotten about the promised "hydrogen economy." But in research labs around the world, progress ...

The sun

September 28, 2015

The sun is the center of the Solar System and the source of all life and energy here on Earth. It accounts for more than 99.86% of the mass of the Solar System and it's gravity dominates all the planets and objects that orbit ...

Low-cost wafers for solar cells

October 1, 2015

Silicon wafers are the heart of solar cells. However, manufacturing them is not cheap. Over 50 percent of the pure silicon used is machined into dust. A new manufacturing technique developed by Fraunhofer researchers puts ...

Asteroids found to be the moon's main 'water supply'

October 1, 2015

Water reserves found on the moon are the result of asteroids acting as "delivery vehicles" and not of falling comets as was previously thought. Using computer simulation, scientists from MIPT and the RAS Geosphere Dynamics ...

When black holes collide

September 29, 2015

Picture the scene: two gigantic black holes, each one a good fraction of the size of our Solar System spiralling around each other. Closer and closer they draw until they touch and merge into a single, even more gigantic ...

Recommended for you

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...

A mission to a metal world—The Psyche mission

October 9, 2015

In their drive to set exploration goals for the future, NASA's Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Dec 16, 2008
"(For experts: The team believes the electrons were recaptured by some combination of radiative recombination and charge exchange.)"

Thank you! Really! Thank you!

I'm glad they know we exist.
not rated yet Dec 16, 2008
always nice to be recognised.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.