Dimmest star-like objects discovered

December 10, 2008 By David Chandler
This artist's concept shows the dimmest star-like bodies currently known -- twin brown dwarfs referred to as 2M 0939. The twins, which are about the same size, are drawn as if viewed from one side. Image courtesy / NASA

(PhysOrg.com) -- The two faintest star-like objects ever found, a pair of twin “brown dwarfs” each just a millionth as bright as the sun, have been spotted by a team led by MIT physicist Adam Burgasser.

“These brown dwarfs are the lowest power stellar light bulbs in the sky that we know of,” said Burgasser. And these extra-dim brown dwarfs may be the first discoveries of the predominant type in space. “In this regime [of faintness] we expect to find the bulk of the brown dwarfs that have formed over the lifetime of the galaxy,” he said. “So in that sense these objects are the first of these ‘most common’ brown dwarfs, which haven’t been found yet because they are simply really faint.”

Burgasser, an assistant professor of physics at MIT, said “both of these objects are the first to break the barrier of one millionth the total light-emitting power of the sun.” He is lead author of a paper about the discovery appearing in the Astrophysical Journal Letters on Dec. 10.

Astronomers had thought the pair of dim bulbs was just a single typical, faint brown dwarf with no record-smashing titles. But when Burgasser and his team used NASA’s Spitzer Space Telescope to observe the brown dwarf in infrared light, it was able to accurately measure the object’s extreme faintness and low temperature for the first time. The Spitzer data revealed that what seemed to be a single brown dwarf is in fact twins.

Brown dwarfs are compact balls of gas floating freely in space, too cool and lightweight to be stars but too warm and massive to be planets. The name “brown dwarf” comes from the fact that these small star-like bodies change color over time as they cool, and thus have no definitive color. In reality, most brown dwarfs would appear reddish if they could be seen with the naked eye.

When Burgasser and his collaborators used Spitzer’s ultrasensitive infrared vision to learn more about the object, thought to be a solo brown dwarf, the data revealed a warm atmospheric temperature of 565 to 635 Kelvin (560 to 680 degrees Fahrenheit). While this is hundreds of degrees hotter than Jupiter, it’s still downright cold as far as stars go. In fact, the brown dwarfs, called 2MASS J09393548-2448279, or 2M 0939 for short, are among the coldest brown dwarfs measured so far.

To calculate the object’s brightness, the researchers had to first determine its distance from Earth. After three years of precise measurements with the Anglo-Australian Observatory in Australia, they concluded that 2M 0939 is the fifth closest known brown dwarf to us, 17 light-years away toward the constellation Antlia. This distance together with Spitzer’s measurements told the astronomers the object was both cool and extremely dim.

But something was puzzling. The brightness of the object was twice what would be expected for a brown dwarf with its particular temperature. The solution? The object must have twice the surface area. In other words, it’s twins, with each body shining only half as bright, and each with a mass of 30 to 40 times that of Jupiter. Both bodies are one million times fainter than the sun in total light, and at least one billion times fainter in visible light alone.

Burgasser said studying these objects could help astronomers understand details of brown dwarf structure and evolution. These observations “allow us to see for the first time what the atmospheres of very old and/or very low mass brown dwarfs contain and how they are structured,” he said.

Other authors of this paper are Chris Tinney of the University of New South Wales, Australia; Michael C. Cushing of the University of Hawaii, Manoa; Didier Saumon of the Los Alamos National Laboratory, N.M.; Mark S. Marley, NASA Ames Research Center, Moffett Field, Calif.; and student Clara S. Bennett (’10) of MIT.

The work was funded in part by a NASA grant.

Provided by MIT

Explore further: Over half of world's primates on brink of extinction: experts

Related Stories

Cool, dim dwarf star is magnetic powerhouse

November 19, 2015

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that a dim, cool dwarf star is generating a surprisingly powerful magnetic field, one that rivals the most intense magnetic regions ...

Unlocking the mysteries of 'little starlets'

November 6, 2015

For the first time a powerful laser has been used to further our understanding of some of the most mysterious celestial objects just beyond the solar system - brown dwarfs.

What's it like to see auroras on other planets?

November 10, 2015

Witnessing an aurora first-hand is a truly awe-inspiring experience. The natural beauty of the northern or southern lights captures the public imagination unlike any other aspect of space weather. But auroras aren't unique ...

The (possible) dwarf planet 2007 OR10

September 3, 2015

Over the course of the past decade, more and more objects have been discovered within the trans-Neptunian region. With every new find, we have learned more about the history of our solar system and the mysteries it holds. ...

Recommended for you

Earth might have hairy dark matter

November 23, 2015

The solar system might be a lot hairier than we thought. A new study publishing this week in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California, proposes the existence of ...

Scientists detect stellar streams around Magellanic Clouds

November 23, 2015

(Phys.org)—Astronomers from the University of Cambridge, U.K., have detected a number of narrow streams and diffuse debris clouds around two nearby irregular dwarf galaxies called the Magellanic Clouds. The research also ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (1) Dec 11, 2008
Just a thought. What if this is the beginning of finding "dark matter". If there are enough (and I realize it must be a huge amount) brown dwarfs that are even dimmer, they wouldnt get noticed but you should see their gravitational effect.

In reality, these brown dwarfs will make up a fraction of dark matter, but hey, it's a start!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.