Nanotube Construction Set

Nov 14, 2008

(PhysOrg.com) -- Organic nanotubes could make rapid strides as functional nanomaterials in a new approach to nanoelectronics and biomedicine, as they can be made of easily varied and modified building blocks.

Researchers led by Chulhee Kim at the Inha University in South Korea have recently developed nanotubes made of dendrons and cyclodextrins. As reported in the journal Angewandte Chemie, they have now successfully functionalized the surfaces of the tubes so that, among other things, they can be used to make biosensors for the detection of a specific protein.

Dendron is the Greek word for tree. Dendrons are tree-shaped branched molecules. Kim and Chiyoung Park selected a molecular “tree” with four long hydrocarbon chains as “branches”. At the end of the “trunk” they attached a pyrene group, a system made of four aromatic carbon rings. In solution, these dendrons come together “branch to branch” to form vesicles, or tiny bubbles. If the researchers add cyclodextrins, which are ring-shaped closed chains of glucose rings, each of these settles around a pyrene group like a cuff. This makes it more favorable for the dendrons to group themselves into long nanoscopic tubes whose surfaces are coated with the cyclodextrin “cuffs”.

What makes this concept into a truly universal construction set is that the cyclodextrins can easily be equipped with a large variety of functional groups, which then dangle out into the solution from the surfaces of the tubes. The team was thus able to attach special groups that like to bind gold nanoparticles. Nanotubes that are densely covered in metal particles could have interesting applications in nanoelectronics.

The pyrene groups on the nanotubes have another special advantage: they fluoresce. This property allows them to be used in the design of biosensors. To demonstrate this concept, the researchers constructed a specific test for the protein avidin. They equipped the surfaces of the nanotubes with biotin, a biomolecule that specifically binds the proteins avidin and streptavidin. If streptavidin bound to gold nanoparticles is added, these bind to the nanotubes by way of the biotin anchors. This brings the gold particles into the vicinity of the pyrene groups, which causes them to interact electronically, “switching off” the fluorescence. If the protein avidin and the gold-bound streptavidin are added, biotin anchors on the surface of the tube preferentially bind avidin. Pyrene groups in the vicinity of avidin fluoresce. The fluorescence quencher gold-strepavidin can only bind to the binding sites not occupied by avidin. The intensity of the fluorescence therefore depends on the avidin concentration.

Citation: Chulhee Kim, Inha University, Tunable Fluorescent Dendron-Cyclodextrin Nanotubes for Hybridization with Metal Nanoparticles and their Biosensory Function, Angewandte Chemie International Edition 2008, 47, No. 51, doi: 10.1002/anie.200804087

Provided by Wiley

Explore further: Graphene and diamonds prove a slippery combination

Related Stories

Recommended for you

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.