To Make Better MRI Images, Let The Atoms Spin Out Of Control

November 25, 2008
Scientists in Ohio and France have explained some strange atomic behavior, and made a discovery that could ultimately make MRI images sharper. This graphic depicts the quantum mechanical principal of super-adiabaticity, which was responsible for the behavior of atoms in some nuclear magnetic resonance experiments. If the trajectory of the atoms during an experiment were mapped on a globe, then the purpose of an adiabatic experiment is to move the atoms being studied from one point on the globe to another -- slowly, and following a very carefully designed path (gray line). With super-adiabaticity, the atoms follow a different -- sometimes, wildly different -- path (orange line), but still end up at the right destination. Image courtesy of Philip Grandinetti, Ohio State University

Researchers in Ohio and France have solved a longstanding scientific mystery involving magnetic resonance -- the physical phenomenon that allows MRI instruments in modern hospitals to image tissues deep within the human body. Their discovery, a new mathematical algorithm, should lead to new MRI techniques with more informative and sharper images.

As described in an article posted online today in the Journal of Chemical Physics, a peer-reviewed journal published by the American Institute of Physics (AIP), the work may even help scientists devise ways of using MRI without having to put people inside giant magnets -- an advance that could lead to portable and less costly MRIs.

The new work solves a mystery that has persisted for decades, says Philip Grandinetti, a professor of chemistry at The Ohio State University and one of the coauthors of the article. The solution to this mystery came as a result of their work in trying to optimize magnetic resonance pulse sequences. Specifically, they were looking for better ways of doing something known as an "inversion" in a magnetic resonance measurement.

Bathed in the magnetic field, atomic nuclei within water and other molecules throughout cells and tissues in a person's body will align themselves in the direction of the magnetic field. Inversion is an important process done in MRI scans that realigns the nuclei so they are against the magnetic field. When all is said and done, inverting the nuclei of people inside MRI scanners can reveal such things as cancer tumors, whose slightly different response to the changing field can be used to detect their presence amid surrounding healthy tissue.

These inversions of the nuclear spins are typically done "adiabatically". The method involves placing a patient inside the large donut-shaped magnet of an MRI instrument and applying low-power radio waves that sweep through a specific range of frequencies. If a frequency sweep is performed slowly enough then at the end of the process all the nuclei will be "inverted." The confounding thing, says Grandinetti, is that for decades adiabatic sweeps worked in many situations, even though the mathematics predicted that they should not have. Solving this mystery, Grandinetti and his colleagues turned to a new mathematical framework, called "superadiabaticity" that was discovered in the late 1980s by Michael Berry, a mathematical physicist at University of Bristol, but largely unappreciated until now.

The difference between the two processes is represented in the equations, and the upshot, says Grandinetti, is that now scientists have the correct mathematical framework to work with. This can help them design ways to better control MRI inversions and get more information out of MRI scans.

"We were just viewing the problem wrongly," says Grandinetti, who conducted the research in collaboration with his colleagues Michael Deschamps and Dominique Massiot at the National Center for Scientific Research (CNRS) in France and Gwendal Kervern, Guido Pintacuda, and Lyndon Emsley the University of Lyon in France.

"It is exciting because everyone missed this simple explanation," adds Grandinetti.

Grandinetti hopes to incorporate the algorithm into software for controlling MRI scans, where it would boost image resolution. One day, it might even help these instruments obtain signals from objects located outside of a magnet. Scientists, he adds, could also use superadiabaticity to exert better control over atoms for quantum computing, and to make more precise structural studies of complex biological molecules.

The article "Superadiabaticity in Magnetic Resonance" by Michael Deschamps et al. is being published online on November 25, 2008 in the Journal of Chemical Physics (Volume 129, issue 20).

Source: American Institute of Physics

Related Stories

Recommended for you

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Nov 25, 2008
This article fails to explain anything.
What is "superadiabaticity"? How it differs from normal one? Why does it solve the problem?
not rated yet Nov 27, 2008
1 / 5 (1) Nov 28, 2008
Ok...what exactly was this about?
Better resolution for MRI's?
Scientists just now starting to use equations discovered in the 80's?
Some new principle in eclectomagnetic research?
Pick a topic and stick with it!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.