Nanoscale Dominoes: Magnetic Moments Topple Over in Rows

September 24, 2008

Physicists at the Institut für Festkörperforschung in Germany have discovered a type of domino effect in rows of individual manganese atoms on a nickel surface. They determined that the magnetic arrangement of these nanowires varies depending on their lengths.

Using computer simulations and statistical models, the physicists found that if only a single atom is added or taken away, the magnetic structure of the nanowire changes entirely.

Specifically, when the number of atoms is odd, the magnetic moments (a measure of how well the nanowire acts as a magnet) are neatly aligned in opposite directions. When the number of atoms is even, the moments line up randomly, in a jumbled mix of different positions. Adding an atom at the end of the nanowire or taking one away causes the magnetic moments to topple over like a row of dominoes. But unlike dominoes, the effect can be completely reversed.

This new quantum mechanical effect makes magnetic switches possible on an atomic scale, and could one day be applied to the transporting and storing of magnetic information onto extremely small spaces. Their work is importance for the design of high speed, high storage capacity, and energy saving computing devices. The authors hope that it will be proven experimentally in the near future.

Citaton: S. Lounis, P. Dederichs, and S. Blugel, Physical Review Letters (forthcoming article)

Source: APL

Explore further: Novel state of matter: Observation of a quantum spin liquid

Related Stories

Novel state of matter: Observation of a quantum spin liquid

July 26, 2016

A novel and rare state of matter known as a quantum spin liquid has been empirically demonstrated in a monocrystal of the compound calcium-chromium oxide by team at HZB. According to conventional understanding, a quantum ...

Atomic bits despite zero-point energy?

July 8, 2016

So-called "zero-point energy" is a term familiar to some cinema lovers or series fans; in the fictional world of animated films such as "The Incredibles" or the TV series "Stargate Atlantis", it denotes a powerful and virtually ...

Mixing topology and spin

July 20, 2016

In the pursuit of material platforms for the next generation of electronics, scientists are studying new compounds such as topological insulators (TIs), which support protected electron states on the surfaces of crystals ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.