Robots Detect Behavioral Cues to Follow Humans

August 21, 2008 by Lisa Zyga feature
Robots Detect Behavioral Cues to Follow Humans
A follower robot follows a leader robot (with UC Davis logo). Using behavioral cues, the follower can make its mission more reliable and accurate. Image credit: Chueh, et al. ©2008 IEEE.

Robots can be ironic. Even though they might not have emotions of their own, they can still detect and respond to humans’ emotions. A recent study has shown that, by picking up on human emotional traits, as well as a variety of other conscious and unconscious behavioral cues, robots may be able to act more naturally and accurately with humans.

The researchers, from the University of California, Davis, have developed a system that allows follower robots to use behavioral cues from human leaders and other robots in order to track and follow them. The ability to follow will likely be essential as robots continue to work alongside people more and more, such as in office buildings, hospitals, and airports.

“As humans, we constantly incorporate other peoples' current actions as clues (cues) as to what they may do in the future,” Sanjay Joshi of the University of California, Davis, told “For instance, we have a ‘sixth sense’ on the highway to know that a certain car will swerve into our lane soon, based on the driver's current driving patterns. Then, we may become more defensive in our own driving. In our work, we wanted to begin the process of allowing robots to use behavioral cues (of humans or other robots), to make the robot's mission more reliable and accurate. In social work environments populated by numerous people and robots, these types of cues should be abundant.”

In their robot-following system, the researchers integrated information provided by behavioral cues to improve the performance of robot followers along with other tracking methods, such as cameras. The system continuously estimates the future predicted position of the leader as it moves, and then directs the follower robot to the predicted position.

The researchers’ aim was to reduce the amount of instructions or technical expertise required from human leaders to robots. As the authors noted, robots may be accepted if they are helpful, but can easily be rejected if they are difficult to work with.

The researchers explained that behavioral cues that robots might use could include any action or signal that the leader exhibits that hints at a future action. These might be intended behaviors, such as pointing or waving. Other cues might be unconscious, such as behaviors that indicate stress or sadness, since they may indicate generally quick or slow movement patterns. Also, studies on human walking have shown that people unconsciously turn their head up to 25 degrees about 200 milliseconds before turning.

In experiments, the researchers tested how well a follower robot (Evolution Robotics’ Scorpion) could follow a leader robot (another Scorpion) as it zig-zagged and turned a corner of a hallway. Turning was the more difficult action to follow, since the leader robot escaped the sight of the follower robot. Without using behavioral cues, the follower robot would initiate a searching algorithm by turning and looking around. If the leader wasn’t too far away, the follower could detect it and continue following; otherwise, it would be lost and stop moving.

The addition of the behavioral-cue controller significantly helped the follower robot to keep track of the leader. By detecting the leader’s subtle behaviors, the follower could anticipate when the leader was about to turn and predict its future path. Even though it lost sight of the leader, it kept close enough to its path so that it could find the leader again after the “blind” turn.

Overall, the behavioral-cue model had advantages in cases where the leader robot made drastic turns that would otherwise leave the follower robot lost. But since other controllers also had advantages, the researchers suggest that a supervisory control system that coordinates multiple controllers could be useful. They also anticipate that a wide range of behavioral cues should lead to highly successful robot followers.

“In the future, we hope to explore relevant behavioral cues for other robot tasks in human-robot work environments, and work on the robotics and computer science tools needed to make effective use of those cues,” Joshi said.

More information: Chueh, Michael; Au Yeung, Yi Lin William; Lei, Kim-Pang Calvin; and Joshi, Sanjay S. “Following Controller for Autonomous Mobile Robots Using Behavioral Cues.” IEEE Transactions on Industrial Electronics, Vol. 55, No. 8, August 2008.

Copyright 2008
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Mind your manners, robot: How social cues influence human-robot interaction

Related Stories

Autonomous robot Myon joins the cast at a Berlin opera

July 2, 2015

"My Square Lady" last month opened in Berlin at the Komische Oper. The outstanding feature about this production is that a character named Myon plays a key role on stage, and Myon is a robot—of the white, shiny variety ...

Robotically steered flexible needles navigate in tissue

August 26, 2015

Robotically steering flexible needles can reach their intended target in tissue with sub-millimetre level accuracy. This has been demonstrated by the doctoral research of Momen Abayazid, who is affiliated with the research ...

Recommended for you

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Radio frequency 'harvesting' tech unveiled in UK

September 30, 2015

An energy harvesting technology that its developers say will be able to turn ambient radio frequency waves into usable electricity to charge low power devices was unveiled in London on Wednesday.

Professors say US has fallen behind on offshore wind power

September 29, 2015

University of Delaware faculty from the College of Earth, Ocean, and Environment (CEOE), the College of Engineering and the Alfred Lerner School of Business and Economics say that the U.S. has fallen behind in offshore wind ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (1) Aug 22, 2008
Why not have the leader robot simply indicate which way it's going to turn? As even people in cars do.
4 / 5 (1) Aug 28, 2008
Why not have the leader robot simply indicate which way it's going to turn? As even people in cars do.
That would help with robot to robot communication, but the article is discussing combinations of humans and robots.
not rated yet Sep 04, 2008
Why not have the leader robot simply indicate which way it's going to turn? As even people in cars do.

This is about learning not receiving directions, the driver anticipates anothers movement, without signaling. And Behavioral Cues concept is outstanding.
not rated yet Sep 19, 2008
Anthropization of robots is for toymakers.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.