OSU students build and launch a sensor into space

August 11, 2008
The high-altitude balloon carrying a radiation detector, high-resolution camera, sensors for temperature, pressure and humidity, and a GPS launches from OSU in Stillwater. Image: Dr. Jamey Jacob

Students from OSU's Radiation Physics Laboratory built and successfully launched a cosmic radiation detector this summer that reached the edge of outer space. Carried by a helium-filled balloon 12 inches in diameter, the detector flew for more than two hours and reached 104,000 feet in altitude. The device recorded radiation levels at the varying altitudes – information that will be used by NASA to develop instrumentation for space flight.

"This is really amazing," said Carl Johnson, a physics graduate student who designed and constructed the device. "Our detector actually flew to the edge of outer space and then back to ground, and the whole time it worked perfectly."

In addition to the radiation sensor, the balloon carried a high-resolution camera, sensors for temperature, pressure and humidity, and a GPS module to determine altitude and geographic position. The balloon and instrumentation launched from the Stillwater campus and landed about 10 miles away in Perry. OSU engineering graduate and undergraduate students Joe Conner, Xander Buck and Ryan Paul conducted the launch.

Funded through a NASA EPSCoR grant, this project was overseen by Drs. Eric Benton and Eduardo Yuihara of the OSU physics department and Dr. Andy Arena of OSU department of mechanical and aerospace engineering. Art Lucas of Lucas Newman Science and Technologies also assisted on the design and development of the radiation detector.

Benton said the purpose of the grant is two-fold.

"The purpose of the grant is not only to develop instrumentation for use in space flight but also to promote student interest in science and engineering through experiments with high-altitude balloons," he said. "The best part about the project is that the detector was built from everyday materials and launched into near space from right here in our own backyard. This proves you can accomplish really amazing things with simple materials."

The detector serves as a prototype for radiation detectors that will be included in the Near Space Standard Science Platform, a program used by science students at high schools and colleges around the country conducting research on high-altitude balloons.

Source: Oklahoma State University

Explore further: POLAR detector flies into orbit with a Chinese space mission

Related Stories

World's most sensitive dark matter detector completes search

July 21, 2016

The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills of South Dakota, has completed its silent search for the missing ...

New white paper showcases the future of space robotics

July 22, 2016

Autonomous robots capable of walking, swimming and climbing, will replicate insects, birds, animals and even humans on future missions of space exploration within decades, according to a new UK-RAS Network white paper led ...

Twinkle exoplanet mission completes design milestone

June 17, 2016

Twinkle, an independent mission to unravel the story of planets in our galaxy, has completed a key preliminary design milestone. The results of the payload study demonstrate that Twinkle's instruments will be able to achieve ...

Recommended for you

Hubble spots an irregular island in a sea of space

August 29, 2016

This image, courtesy of the NASA/ESA Hubble Space Telescope's Advanced Camera for Surveys (ACS), captures the glow of distant stars within NGC 5264, a dwarf galaxy located just over 15 million light-years away in the constellation ...

NASA's Juno successfully completes Jupiter flyby

August 29, 2016

NASA's Juno mission successfully executed its first of 36 orbital flybys of Jupiter today. The time of closest approach with the gas-giant world was 6:44 a.m. PDT (9:44 a.m. EDT, 13:44 UTC) when Juno passed about 2,600 miles ...

The proliferation of Jupiter-like worlds

August 29, 2016

Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around.

Rosetta captures comet outburst

August 25, 2016

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

nilbud
1 / 5 (1) Aug 13, 2008
30Km is not anywhere near the edge of outer space, perhaps the student needs to study some more and play with balloons less. This kind of project should be undertaken by primary students, it seems pathetic for university level.
jatkins
not rated yet Sep 11, 2008
There is no strict definition for "the edge of space", but 30 km is perfectly fair. It's above 99% of the atmopshere, and just 70 km below the Karman line. The enviroment at that altitude is of extreme temperature (~-55C) and is a near vacuum; there's a reason it's termed "near space".

It's an awesome project that certainly couldn't be undertaken by primary school students (probably not even secondary). They're producing extremely useful data with a great experiment.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.