Scientists determine strength of 'liquid smoke' with 3D images

July 29, 2008
Section and isosurface rendering of a 500 nm cube from the interior of the 3D volume. The foam structure shows globular nodes that are interconnected by thin beam-like struts. Approximately 85% of the total mass is associated with the nodes, and there is no evidence of asignificant fraction of dangling fragments.

(PhysOrg.com) -- Researchers have created a 3D image of a material referred to as "liquid smoke." Aerogel, also known as liquid smoke or "San Francisco fog," is an open-cell polymer with pores smaller than 50 nanometers in diameter.

For the first time, Lawrence Livermore and Lawrence Berkeley scientists have peered into this material and created three-dimensional images to determine its strength and potential new applications.

Aerogel is a form of nanofoam, an engineered material designed for high strengh-to-weight ratio. Such nanofoam structires are also present in the fields of geology, phospholipids, cells, bone structure, polymers and structural materials, wherever lightness and strength are needed.

These mesoporous (2-50 nanometer-sized pores) crystalline materials can be used as catalysts for cleaner fuels and for the diffusion of water and oil in porous rocks. The structure and diffusion properties of nanofoams are determined by their structure.

Aerogels have the highest internal surface area per gram of material of any known materials because of its complicated, cross-linked internal structure. They also exhibit the best electrical, thermal and sound insulation properties of any known solid. It's not easy to see inside aerogel to determine the topology and structure at nanoscale-length scales because the smallest pore is normally too small to be observed internally by any conventional microscope.

But Livermore scientist Anton Barty and Lawrence Berkeley researcher and former LLNL scientist Stefano Marchesini were determined. They inverted coherent X-ray diffraction patterns to capture the three-dimensional bulk lattice arrangement of a micron-sized piece of aerogel.

"By imaging an isolated object at high resolution in three dimensions, we've opened the door to a range of applications in material science, nanotechnology and cellular biology," Barty said.

For about 20 years, Livermore has developed and improved aerogels for national security applications, synthesized electrically conductive inorganic aerogels for use as supercapacitors, and as a water purifier for extracting harmful contaminants from industrial waste or for desalinizing seawater, and even used aerogel to capture stardust particles during NASA's Stardust mission.

The new research shows that the lattice structure within aerogel is weaker than expected. The researchers saw a structure made up of nodes connected by thin beams.

"This blob and beam structure explains why these low-density materials are weaker than predicted and explains the high mass scaling exponent seen in the materials," Barty said.

In the future, the 3D analysis could be applied to other porous materials and could help modeling filtration problems such as oil and water in minerals, Barty said.

The research appears in the July 29 issue of the journal Physical Review Letters.

Provided by Lawrence Livermore National Laboratory

Explore further: Benefits of strip-till surface after five-year study

Related Stories

Benefits of strip-till surface after five-year study

July 23, 2015

How does style of tilling make a difference in crop success? The blades on a till don't simply chop up soil and move it around. They blend dead plant material left from harvest into the soil. They also expose wetter soil ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

Smarter window materials can control light and energy

July 22, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal ...

Recommended for you

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

6 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

slh
4.3 / 5 (3) Jul 29, 2008
how much does it cost (the aerogel, that is)?
Soylent
4.7 / 5 (3) Jul 29, 2008
how much does it cost (the aerogel, that is)?


Last I checked it was about $1000/lb.
gmurphy
4 / 5 (3) Jul 30, 2008
whats that price in volume?
CaptSpaulding
5 / 5 (3) Jul 30, 2008
whats that price in volume?


depends greatly on the aerogel
cjameshuff
5 / 5 (2) Jul 30, 2008
It's sometimes called "frozen smoke", sometimes called "solid smoke", but I have no idea why anyone would ever call a dry, brittle material "liquid smoke", nor have I ever seen that term used for aerogel.
YankInOz
3.7 / 5 (3) Jul 30, 2008
Actually prices for Aerogel are dropping because of various applications and new methods of production. There is a company in Sweden that uses Aerogel as a "clear" insulator in roofing panels that are made of triple pane glass. I have more examples, if you'd like.

Go to the NASA website and you will find it called "liquid smoke" - it has been called such for years. And it also refers to the process of production.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.