The robot that climbs in the pipe

June 23, 2008

Industrial pipe systems are inaccessible and narrow. The pipes can be vertical and have junctions. Just as challenging, leakage points in the water system must be located, the condition of oil and gas pipelines must be checked and ventilation systems need to be cleaned.

In the main, today’s robots are not that clever. They cannot climb or navigate in vertical pipes – and very few have active joints.

Cybernetics and optical measurement scientists at SINTEF are working on a solution.

Navigation by light and image
With experience and knowledge acquired with snake robots Anna Konda and AiKo as a starting point, a team is now developing an intelligent pipe inspection robot on wheels that will be able to climb, navigate intersections and at any given time know its location in the pipe system.

The inspection robot will be able to move in pipes of various diameters, right down to 20 cm. Cybernetics scientists are developing the propulsion system while a team of optics scientists is working on the new robot’s visual system.

“We are currently developing the vision system than will enable the robot to navigate,” says Jens Thielemann at SINTEF ICT. “In the meantime, we are using the lego robot Mindstormer to collect the data to train the vision system. This lego robot has a camera attached and moves around the pipe following a pre-programmed map. The next step will be to utilise the vision system as input to control the actual snake robot we are going to develop.”

The camera that will provide the new robot’s vision is an off the shelf time-of-flight camera that provides a bathymetric chart of the pipe system using inflected light.
“Combined with our algorithms, the robot will be able to navigate and move forward on its own,” says Thielemann. “The robot knows when a left or right turn is approaching and also contains a built-in path description detailing what tasks it should carry out in different situations.

Functions as a train
“Given our previous work on snake robots, we have become good at controlling mechanisms that are linked,” says SINTEF cybernetics scientist Erik Kyrkjebø.

“We now want to develop a robot with 10-11 joint modules, each with an identical pair of wheels cast in plastic. The weight must be well distributed between the joints. For example, can we put the camera and accelerator motor in two different joint modules? The robot will function as a train when operating horizontally. Such robots already exist, but we want to develop a robot that can climb too.”

The scientists have designed several versions of the pipe inspection robot and have tested different solutions in order to make the new robot both mobile and compact. They have now come up with a design they have faith in.

Twisting upwards
When the robot enters a vertical pipe, it lifts its head in the pipe and meets the pipe wall. It can then either move sideways with its abdomen against the pipe and twist itself upwards or it can topple backwards, attach itself to the pipe wall, in the same way as we would put our feet against a shaft wall to hold on, and then roll upwards.

The scientists emphasise that the project is at the design stage. In June, two of the 11 joint modules will be tested to verify the concept and they hope to demonstrate a prototype model by the end of the year. This comprises just phase one of an industrial development, but the enthusiastic scientists are confident of succeeding in the foreseeable future. The final version of the robot will be constructed of aluminium and is planned to be 1.5 m long.

Source: Aase Dragland

Explore further: What neuroscience can learn from computer science

Related Stories

What neuroscience can learn from computer science

August 10, 2015

What do computers and brains have in common? Computers are made to solve the same problems that brains solve. Computers, however, rely on a drastically different hardware, which makes them good at different kinds of problem ...

Robots in the classroom

April 20, 2012

Tore Fløan smiles at me: “In the past we competed with European organizations, but now we have the Chinese breathing down our necks,” he says.

The robot children

September 15, 2009

The brains of the snake robots are still no more advanced than that of a one-year-old, but scientists at SINTEF (Norway) want to bring them up to the level of a teenager. At least.

Shrew whiskers inspire ground-breaking robot design

January 23, 2012

( -- The Etruscan shrew, one of the world’s tiniest mammals, measuring around 4 centimetres long, is the inspiration for a ground-breaking new robot developed to use sophisticated whiskers to find its way ...

Recommended for you

Dutch create world's largest man-made wave

October 5, 2015

In a country where most people live below sea level, studying the oceans is a matter of survival. Now Dutch scientists have created the world's biggest man-made wave in a bid to prepare for the worst.


Adjust slider to filter visible comments by rank

Display comments: newest first

4.5 / 5 (2) Jun 23, 2008
Pipestormer! Coming soon out of your toilet!
4 / 5 (1) Jun 23, 2008
Another genius invention inspired by legos.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.