Like a rock: New mineral named for UW astronomer

Jun 13, 2008

The International Mineralogical Association has named a new mineral, the first to be discovered in a particle from a comet, in honor of Donald Brownlee, a University of Washington astronomer who revolutionized research on interplanetary dust entering Earth's atmosphere.

The manganese silicide mineral, a combination of manganese and silicon, is now officially called brownleeite and joins a list of more than 4,300 accepted minerals. It was found inside a particle collected from a dust stream entering the atmosphere in 2003.

Brownlee, whose UW office is adorned with a variety of mineral specimens, was clearly pleased with the honor – and somewhat amused.

"I've always been very intrigued by minerals, so it's great to be one," he said. "I never dreamed I'd have a mineral named after me. I guess maybe being a vitamin is next."

The particle was captured by a high-altitude NASA aircraft, and NASA researchers in Houston, along with collaborators elsewhere in the United States, Germany and Japan, identified the compound. (See phys.org/news132505751.html). Brownleeite, a semiconductor material, can be synthesized but has not been found naturally on Earth.

The team that found the manganese silicide was led by NASA scientist Keiko Nakamura-Messenger from the Johnson Space Center in Houston, who provided documentation for the international mineralogical body to declare the specimen to be a new mineral. The team also asked that it be named for Brownlee.

"This really did surprise me because I know it took a lot of effort to get this mineral approved," Brownlee said.

Nakamura-Messenger's team believes the dust particle originated in a comet, possibly comet 26P/Grigg-Skjellerup, which was predicted to be the source of an Earth-crossing dust stream in April 2003, when the particle was captured.

The Earth is covered with more than 30,000 tons of particles from space every year, one particle per square meter of planet surface every day. But the particles are so small that it would take 10 billion to fully cover that square meter of surface, so they are extremely hard to find.

"That's a lot of dirt and it takes 300 million years to build up a layer as thick as the diameter of a human hair," Brownlee said.

He began his efforts to capture particles of provable extraterrestrial origin while he was a UW doctoral student in the late 1960s. Others had made similar efforts previously, but they proved to be unsuccessful. Using a succession of high-altitude balloons, Brownlee captured a few particles that could be proven to have come from somewhere other than Earth.

His third balloon carried an 800-pound machine he calls "the vacuum monster," which dangled below the balloon as it drifted at an altitude of 125,000 feet, or about 24 miles. The machine made it possible to sample a very large volume of air, and eventually he was able to capture a total of about a dozen interplanetary dust particles from seven flights.

He later devised a small collector that could be attached to the fuselage of high-flying U2 reconnaissance aircraft and, because the planes remain airborne for so long and fly at high speeds, they are able to collect hundreds of particles.

"Almost all of the flights are done for something else, and these detectors are along for the ride. When they are opened, they just flop out into the atmosphere and gather particles as the plane moves along," Brownlee said.

Brownlee also is a leading authority on comets. He is the principal investigator of NASA's Stardust mission, which traveled to comet 81P/Wild-2 beyond the orbit of Mars, captured particles streaming from the comet's surface, and returned them to Earth in January 2006. The samples are curated by the Johnson Space Center.


Source: University of Washington

Explore further: Science funding should go to people, not projects

Related Stories

Exposed water ice detected on comet's surface

Jun 25, 2015

Using the high-resolution science camera on board ESA's Rosetta spacecraft, scientists have identified more than a hundred patches of water ice a few metres in size on the surface of Comet 67P/Churyumov-Gerasimenko.

Re-use of paper sludge via pyrolysis

Jun 04, 2015

The University of Twente is helping the paper industry to convert paper sludge - the largest waste stream from paper factories - into bio-oils and raw materials suitable for re-use. At the end of the summer, ...

The difference between asteroids and meteorites

Jun 03, 2015

Asteroids, meteors, and meteorites … It might be fair to say these rocks from space inspire both wonder and fear among us Earthlings. But knowing a bit more about each of them and how they differ may eliminate ...

Recommended for you

Smithsonian to improve ethics policies on research funding

Jun 26, 2015

After revelations that a scientist failed to disclose his funding sources for climate change research, the Smithsonian Institution said Friday it is improving its ethics and disclosure policies to avoid conflicts of interest.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.