A Smarter Way to Grow Graphene

May 14, 2008 By Laura Mgrdichian feature
A schematic rendering of the first graphene layer (G) grown on the ruthenium substrate (Ru). Image courtesy Peter Sutter, Brookhaven National Laboratory

Graphene, a sheet of carbon just one atom thick, has many potential uses in the electronics industry, but producing these ideal two-dimensional carbon sheets is very difficult and, as a result, their use has been stifled so far. But scientists from Brookhaven National Laboratory may have finally found a way around the issue, devising a method to yield high-quality graphene sheets.

The current methods of isolating graphene each have problems. The most common, known as micromechanical cleavage, in which sheets are sheared off of a larger crystal, doesn't reliably produce graphene samples that are large enough for applications.

Another method, in which the atomic structure of a substrate is used to seed the growth of the graphene, known as epitaxial growth, doesn't yield a sample with a uniform thickness of graphene layers, and bonding between the bottom graphene layer and the substrate may affect the properties of the carbon layers.

The Brookhaven group based their technique on this second method, except that they were able to grow the graphene in a controlled, layer-by-layer manner. The substrate they chose is the rare metal ruthenium, and while the bottom graphene layer does interact strongly with it, the next layer up is almost completely detached, only weakly electrically coupled to it, and behaves much like free-standing graphene.

“This second layer retains the inherent electronic structure of graphene,” Brookhaven physicist Peter Sutter, who led the work, told PhysOrg.com. “Thus, our findings may represent a long-sought route toward rational graphene synthesis and the creation of high-quality graphene for applications in electronic devices and sensors.”

Graphene has several properties that make it desirable for electronics, including its very high carrier mobility—that is, electrons in graphene can roam rather freely. Graphene can respond to a single gas molecule, making it very attractive as a detector material for sensors.

The Brookaven group's growth process takes place at high temperatures. To start, the researchers caused carbon atoms to become absorbed within the ruthenium by heating the entire sample to 1150 degrees Celsius (ºC). The sample was then cooled to about 850 ºC, which caused large amounts of the absorbed carbon to rise to the surface of the ruthenium. The carbon formed single-layer lens-shaped islands about 100 micrometers (millionths of a meter) in width, dotting the entire substrate surface.

Eventually, the islands grew into a complete first graphene layer. And at about 80 percent coverage, the growth of the second layer began.

Sutter and his group observed the growth and studied the graphene's properties using various instruments, including a scanning electron microscope and a low-energy electron microscope.

Citation: Peter W. Sutter, Jan-Ingo Flege and Eli A. Sutter Nature Physics advance online publication, 6 April 2008 (DOI:10.1038/nmat2166)

Copyright 2008 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Dimensionality transition in a newly created material

Related Stories

Dimensionality transition in a newly created material

November 30, 2015

Iron oxides occur in nature in many forms, often significantly different from each other in terms of structure and physical properties. However, a new variety of iron oxide, recently created and tested by scientists in Cracow, ...

Researchers design and patent graphene biosensors

November 13, 2015

The Moscow Institute of Physics and Technology (MIPT) is patenting biosensor chips based on graphene, graphene oxide and carbon nanotubes that will improve the analysis of biochemical reactions and accelerate the development ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(Phys.org)—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.