Scientists build a better DNA molecule

May 27, 2008

Building faultless objects from faulty components may seem like alchemy. Yet scientists from the Weizmann Institute’s Computer Science and Applied Mathematics, and Biological Chemistry Departments have achieved just that, using a mathematical concept called recursion. 'We all use recursion, intuitively, to compose and comprehend sentences like ‘the dog that chases the cat that bit the mouse that ate the cheese that the man dropped is black,’' says Prof. Ehud Shapiro.

Recursion allows long DNA molecules to be composed hierarchically from smaller building blocks. But synthetic DNA building blocks have random errors within their sequence, as do the resulting molecules. Correcting these errors is necessary for the molecules to be useful. Even though the synthetic molecules are error prone, some of them are likely to have long stretches that do not contain any faults.

These stretches of faultless DNA can be identified, extracted, and reused in another round of recursive construction. Starting from longer and more accurate building blocks in this round increases the chances of producing a flawless long DNA molecule.

The team, led by doctoral students Gregory Linshiz and Tuval Ben-Yehezkel under the supervision of Shapiro, found in their experiments that two rounds of recursive construction were enough to produce a flawless target DNA molecule. If need be, however, the error correction procedure could be repeated until the desired molecule is formed.

The team’s research, recently published in the journal Molecular Systems Biology, provides a novel way to construct faultless DNA molecules with greater speed, precision, and ease of combining synthetic and natural DNA fragments than existing methods. 'Synthetic DNA molecules are widely needed in bio-logical and biomedical research, and we hope that their efficient and accurate construction using this recursive process will help to speed up progress in these fields,' says Shapiro.

Source: Weizmann Institute of Science

Explore further: Researchers achieve first total synthesis of cancer-killing shishijimicin A

Related Stories

The artificial enzyme that "acts" natural

July 8, 2015

Certain genetic diseases arise from a deficit of specific genes. An enzyme that amplifies gene transcription could be a viable therapy in these cases, as long as genes are not stimulated to work on the wrong part of the body. ...

Single-cell technologies advance the value of genomics

June 24, 2015

Biologists are looking to extract as much information as possible from small amounts of valuable biological material, and to understand biological responses at higher levels of resolution. The Genome Analysis Centre has been ...

World's first digitally-encoded synthetic polymers

June 5, 2015

Researchers have for the first time succeeded in recording a binary code on a synthetic polymer. Inspired by the capacity of DNA to retain an enormous amount of genetic information, a team from the Institut Charles Sadron ...

Recommended for you

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.