Data storage using ultra-small needles

March 31, 2008

Dutch researcher Alexander le Fèbre has demonstrated that a field-emission current signal can be used to arrange the position of thousands of nanometre-sharp needles. These probes can be applied to write and read in new storage media with an extremely high density, using bits on a nanometre scale.

The development of the hard disk is now reaching its technical limits because the entire disk is served by just a single head. Consequently, the capacity of the disk and the reading and writing speed cannot expand much more in the future.

Therefore research into a memory based on probes is being carried out at the University of Twente’s MESA+ research institute. Being able to control the position of each separate probe is essential for realising a system with extremely high densities.

Le Fèbre's measurements show that a field-emission current signal can be used to adjust the position of the probes without these making direct contact with the storage medium. If a constant current is maintained and the applied voltage is varied, the distance between the probe apex and the storage medium can be adjusted from several nanometres to about 100 nanometres.

The resolution is sufficient for a probe-based storage system. However for practical applications, the current stability and the lifetime of the probes will need to be improved further so that the accuracy and reproducibility of positioning can be increased.

Source: NWO

Explore further: Ultrafast electron diffraction reveals rapid motions of atoms and molecules

Related Stories

Tunneling out of the surface

July 9, 2015

A research team comprising scientists from Tohoku University, RIKEN, the University of Tokyo, Chiba University and University College London have discovered a new chemical reaction pathway on titanium dioxide (TiO2), an important ...

X-ray imaging reveals secrets in battery materials

June 18, 2015

In a new study, researchers explain why one particular cathode material works well at high voltages, while most other cathodes do not. The insights, published in the 19 June issue of the journal Science, could help battery ...

Putting a new spin on computing memory

April 22, 2015

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode ...

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Apr 02, 2008
I see patent infringement on the horizon with
Colossal's 1998 patents.

http://colossalstorage.net

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.