Quasicrystal mystery unraveled with computer simulation

March 6, 2008

The method to the madness of quasicrystals has been a mystery to scientists. Quasicrystals are solids whose atoms aren't arranged in a repeating pattern, as they are in ordinary crystals. Yet they form intricate patterns that are technologically useful.

A computer simulation performed by University of Michigan scientists has given new insights into how this unique class of solids forms. Quasicrystals incorporate clusters of atoms as they are, without rearranging them as regular crystals do, said Sharon Glotzer, a professor in the Department of Chemical Engineering.

Crystals form when liquids freeze into solids. When a normal crystal grows, a crystallite nucleus develops first. The atoms in the liquid attach one-by-one to the crystallite, as though following a template. If the atoms have already formed a cluster on their own, they must rearrange in order to fit the template. This is how a repeating pattern forms.

In the case of quasicrystals, though, atoms that have already formed stable shapes away from the crystallite can still bind to it. They don't have to make adjustments.

"In our simulations of quasicrystals, we observed that the atoms attach to the crystallite in large groups," said chemical engineering doctoral student Aaron Keys. "These groups have already formed locally stable arrangements, and the growing quasicrystal assimilates them with minimal rearrangement."

Because quasicrystals aren't as regimented as regular crystals, the solid can reach a "structural compromise," where liquid-like molecular arrangements are retained in the solid state. This allows quasicrystals to form more easily than regular crystals.

Quasicrystals are found in certain metal alloys that tend to resist wear and corrosion, and are used in non-stick coatings, for example. They also have high tensile strength, meaning high forces are required to stretch them to their breaking point.

"Learning how they grow will help us figure out to how engineer quasicrystalline structures from new building blocks, which could lead to a slew of new materials," Glotzer said.

Glotzer and Keys are authors of a paper on the research, "How do quasicrystals grow?," published in Physical Review Letters. Their paper is featured in an article in the current edition of the journal Nature.

Source: University of Michigan

Explore further: Researchers discover new rules for quasicrystals

Related Stories

Researchers discover new rules for quasicrystals

October 25, 2016

Crystals are defined by their repeating, symmetrical patterns and long-range order. Unlike amorphous materials, in which atoms are randomly packed together, the atoms in a crystal are arranged in a predictable way. Quasicrystals ...

Israeli wins chemistry Nobel for quasicrystals (Update 3)

October 5, 2011

Israeli scientist Dan Shechtman was awarded the Nobel Prize in chemistry on Wednesday for a discovery that faced skepticism and mockery, even prompting his expulsion from his U.S. research team, before it won widespread acceptance ...

Quasicrystals: Somewhere between order and disorder

May 23, 2007

Professionally speaking, things in David Damanik's world don't line up – and he can prove it. In new research that's available online and slated for publication in July's issue of the Journal of the American Mathematical ...

Quasicrystal is extraterrestrial in origin

January 13, 2012

A rare and exotic mineral, so unusual that it was thought impossible to exist, came to Earth on a meteorite, according to an international team of researchers led by Princeton University scientists. The discovery provides ...

Recommended for you

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

The case for co-decaying dark matter

December 5, 2016

(Phys.org)—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.