Optical Atomic Clock: A long look at the captured atoms

February 5, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than that of the microwave oscillations of the cesium atomic clocks, physicists expect another increase in the accuracy, stability and reliability.

In the case of one of the candidates for an optical clock which is developed at Physikalisch-Technische Bundesanstalt (PTB), strontium atoms are retained in the interference pattern of two laser beams.

In this so-called "optical grating" the atomic "pendulum", i.e. the absorption frequency of the atoms, can then be measured very exactly. For this optical grating clock, the loading of cold atoms into an optical grating has been optimized to such an extent that approx. 106 strontium atoms are loaded into the grating within 150 milliseconds at a temperature of a few microkelvin.

There, the atoms remain stored for over one second and are available for a precision measurement of the optical frequency.

This value would serve for the redefinition of the base unit "second" provided that additional investigations and international comparison show that this frequency can be determined with sufficient accuracy.

Source: Physikalisch-Technische Bundesanstalt

Explore further: Measuring tiny forces with light

Related Stories

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

NIST's compact gyroscope may turn heads

August 23, 2016

Shrink rays may exist only in science fiction, but similar effects are at work in the real world at the National Institute of Standards and Technology (NIST).

New approach to ultra-pure frequency lasers

August 3, 2016

A study by Macquarie University researchers has found a new way to make ultra-pure frequency lasers based on diamond that avoids the problems responsible for destabilising and broadening a laser's frequency.

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

A new study looks for the cortical conscious network

August 26, 2016

New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network's nucleus, from which our consciousness could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.