Nanoparticles Generate Supersonic Shock Waves to Target Cancer

January 16, 2008 By Lisa Zyga feature
Tests of the nano combustion in the shock tube showed that the nanocomposite could generate combustion waves with velocities ranging from 1500 to 2300 meters per second, which is in the Mach 3 range. Credit: S. Apperson, et al.

By mixing nanomaterials that act as fuel and oxidizer, researchers have created a combustible nano explosive that can generate shock waves with Mach numbers up to 3.

The team of researchers, a collaboration from the University of Missouri-Columbia (UMC) and the U.S. Army, hope that this nano-sized “smart bomb” can target drug delivery to cancer cells, and leave healthy cells unharmed. Their study is published in a recent issue of Applied Physics Letters.

“Nanoengineered thermites can produce shock waves, and their properties are similar to some primary lead-based explosives,” Shubhra Gangopadhyay, Professor of Electrical and Computer Engineering at UMC, told PhysOrg.com. “Hence these materials may be able to replace lead-based primary explosives. We are also able to integrate this material with micro-chip technology and produce shock waves using these compact micro-chip systems. This micro system has many applications in defense, as well as in life sciences, such as targeted drug and gene delivery.”

The researchers explain that nanothermite composites, made of metallic fuel and inorganic oxidizer, have “outstanding” combustion characteristics. Mixing a low-density composite of copper oxide nanorods (fuel) and aluminum nanoparticles (oxidizer) results in a large contact area between the fuel and oxidizer. On the nanoscale, the low density and large contact area of the nanothermite composite can lead to a fast-propagating combustion.

The team tested the combustion in a shock tube studded with optical fibers and pressure sensors to measure the combustion wave speed. They found that the nano composites could generate combustion waves with velocities ranging from 1500 to 2300 meters per second, which is in the Mach 3 range.

The power of these nano explosives could lead to a breakthrough in drug delivery for cancer and HIV, the researchers explain. First, drugs would be administered with a needle as usual, dispersing through the entire body. But then a hand-held device aimed at the tumor would send a pulse into the tumor. The shock waves created by the pulse would make tiny holes in the cells it was aimed at, allowing the drug to enter the tumor cells. Further, the force of the shock waves would push the drugs to those cells within milliseconds.

The researchers have tested the method on animal tissue, and have demonstrated a 99% success rate – almost all of the cells have properly accepted the drugs. Healthy cells, on the other hand, demonstrate much fewer side effects than with conventional treatments such as chemotherapy. As Gangopadhyay explains, the nano explosives have some different characteristics than conventional explosives.

“In conventional explosives, shock waves are generated during detonation,” she says. “In nanothermites, fast propagating chemical reactions can create shock waves without detonation.” Generating shock waves without detonation is the key to this technology, she says.

If everything goes well, the researchers hope to have the device ready to use in two to five years. Besides biomedical applications, the nano explosives could be useful in other areas, such as geology and seismology. Originally, the technology was used in the Army for IED (improvised explosive device) detection, where shock waves sent into the ground could give an image of what lies beneath.

More information: S. Apperson, et al. “Generation of fast propagating combustion and shock waves with copper aluminum nanothermite composites.” Applied Physics Letters 91, 243109 (2007).

Copyright 2008 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Team demonstrates protein damage by shock waves in traumatic brain injury patients

Related Stories

When nerve cells can’t make contact

September 22, 2006

Using an animal model, brain researchers in Göttingen have examined the effects of mutations that cause autism in humans. These are mutations in the genes which carry the building instructions for proteins in the neuroligin ...

Recommended for you

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

enantiomer2000
1 / 5 (2) Jan 16, 2008
About time we blew up cancer

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.