Virtual factory on the tabletop

December 3, 2007
Virtual factory on the tabletop
Multi-Touch Tables can be operated intuitively with the fingers by means of multi-touch sensing. The new displays can be used in factories to observe production processes, or in museums to provide visitors with even more instructive information. © Fraunhofer IGD

Many industrial processes involve reactions in places that are difficult to see directly. A novel tabletop touch screen allows hidden sequences of events to be observed in progress. It can be operated intuitively using a combination of fingers and recognizes swiping movements.

A crowd of people is gathered around a large table with an illuminated surface, on which images of a journey through pipes and machines in a factory are being displayed. Users can select individual components by touching the corresponding image with a finger. The objects can be rotated and observed by swiping a finger over them – and the same method can be used to watch a process in slow motion.

By drawing apart their two index fingers on the table surface, users can enlarge the image and zoom in on a detail, such as a bay wheel scooping up hundreds of thousands of plastic granules. The Multi-Touch Table provides a tangible virtual replication of processes that normally take place hidden inside networks of pipes: How does the process work? What are its advantages?

The large, industrial-scale display table was developed by researchers at the Fraunhofer Institute for Computer Graphics Research IGD in Darmstadt. “The table is already being used by the Coperion Group of companies,” relates IGD project manager Michael Zöllner. “It allows customers to observe the entire process chain of plastics manufacturing and processing. They can watch in real time as the granulate flows through the pipes and regulate the speed by swiping a finger over the image.” The researchers worked with colleagues at the Steinbeis Institute Design and Systems on the development of this application.

So how does the touch screen work? Infrared LEDs emit light into the Plexiglas® surface of the display at a horizontal angle. This light is internally totally reflected within the acrylic sheet, which allows none of the light to escape. A finger placed on the surface changes its reflective properties, enabling light to emerge. This light is captured by an infrared camera installed beneath the table. Although the system is based on well-known principles, various challenges still had to be overcome.

“The surface of acrylic sheets is too smooth to resolve finger movements. Our solution was to apply a special coating,” says Zöllner. Another problematic aspect was how to project the images. “To obtain a large, bright, undistorted image, the optical path has to be relatively long – something that is difficult to achieve within the confines of the table below the display. We had to affect the optical path itself, by using mirrors to keep it short,” the research scientist explains. As for the user interface, the researchers made sure that it could be used easily and intuitively. After all, nobody wants to have to follow complicated technical instructions when meeting with customers or visiting a museum.

Source: Fraunhofer-Gesellschaft

Explore further: Nanoscale physics underlie new telecommunications technology

Related Stories

'Star Wars': a game-changer in special effects

November 13, 2015

When "Star Wars" audiences were blown away four decades ago by its thrilling battles in space, they were also witnessing a big bang in special effects that is still felt today, as fans await the next installment in the blockbuster ...

The universe as we know it

November 17, 2015

Sitting in a small French bistro across from Pershing Square in downtown Los Angeles, Clifford Johnson held the pumpkin-hued drinking straw parallel to the table.

What is life?

October 20, 2015

"Why would NASA want to study a lake in Canada?"

Recommended for you

Roboticists learn to teach robots from babies

December 1, 2015

Babies learn about the world by exploring how their bodies move in space, grabbing toys, pushing things off tables and by watching and imitating what adults are doing.

Xbox gaming technology may improve X-ray precision

December 1, 2015

With the aim of producing high-quality X-rays with minimal radiation exposure, particularly in children, researchers have developed a new approach to imaging patients. Surprisingly, the new technology isn't a high-tech, high-dollar ...

Making 3-D imaging 1,000 times better

December 1, 2015

MIT researchers have shown that by exploiting the polarization of light—the physical phenomenon behind polarized sunglasses and most 3-D movie systems—they can increase the resolution of conventional 3-D imaging devices ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.