Nanoswitches Toggled by Light

November 26, 2007

Microscopic fissures in a tiny crystal open and close—on command. Researchers led by Ahmed H. Zewail successfully used ultrafast electron microscopy (UEM) to observe nanoscopic structures at their “exercises”, as they report in the journal Angewandte Chemie. Such switchable nanochannels could be useful for future nanoelectronics and nanoscopic “machines”.

Zewail and his team at the California Institute of Technology (Pasadena, USA) are renowned for their work in ultrafast science and technology. Zewail received the Nobel Prize in Chemistry in 1999 for the development of ultrafast laser techniques that are capable of revealing the motions of individual atoms within a molecule during a reaction.

The most recent development to spring from Zewail’s Laboratory is ultrafast electron microscopy. This technique is a combination of a femtosecond optical system (a femtosecond equals 10-15 seconds) with a high-resolution electron microscope; the result is a new tool with extremely high resolution in time as well as in space.

Zewail and his team have now discovered that needle-shaped microcrystals of copper and the organic compound TCNQ (7,7,8,8-tetracyanoquinodimethane, C12H4N4 ), a crystalline, quasi-one-dimensional semiconductor, exhibit optomechanical phenomena that could be of use in nanoelectronic applications.

The investigation showed that these crystals stretch out to become longer (but not wider) when they are irradiated with laser pulses in the microscope. If the irradiation is switched off, they contract back to their original size. This effect was most obvious when one of these needles was broken by the shock of a short, strong laser pulse: A small crack of some ten to one hundred nanometers forms at the break. When the crystal is stretched out under irradiation, the nanoscale channel closes up; upon contraction, it reappears. The phenomenon is reversible, as confirmed by UEM.

Why do these micromaterials stretch under light? Within the crystal, the negatively charged TCNQ ions are arranged so that their central, flat, six-membered rings are piled up on top of each other in the long direction of the needle. The energy of a laser pulse excites electrons; part of this energy is transferred, resulting in uncharged TCNQ molecules. For the uncharged TCNQ, the stacked arrangement is no longer favorable, they now require more space and cause the crystal to grow longer. The degree of stretching depends on the strength of the energy absorbed.

“Our fundamental in situ UEM observations, which reveal the behavior of nanoscopic matter in space and time, opens up new areas to explore, especially in materials science, nanotechnology, and biology,” says Zewail.

Citation: Ahmed H. Zewail, Controlled Nanoscale Mechanical Phenomena Discovered with Ultrafast Electron Microscopy, Angewandte Chemie International Edition 2007, 46, No. 48, 9206–9210, doi: 10.1002/anie.200704147

Source: Angewandte Chemie

Explore further: Superfast fluorescence sets new speed record

Related Stories

Spintronics just got faster

July 20, 2015

In a tremendous boost for spintronic technologies, EPFL scientists have shown that electrons can jump through spins much faster than previously thought.

Better memory with faster lasers

July 2, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. Using ultrafast laser ...

Building a better semiconductor

June 26, 2015

Research led by Michigan State University could someday lead to the development of new and improved semiconductors.

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.