Nanoswitches Toggled by Light

November 26, 2007

Microscopic fissures in a tiny crystal open and close—on command. Researchers led by Ahmed H. Zewail successfully used ultrafast electron microscopy (UEM) to observe nanoscopic structures at their “exercises”, as they report in the journal Angewandte Chemie. Such switchable nanochannels could be useful for future nanoelectronics and nanoscopic “machines”.

Zewail and his team at the California Institute of Technology (Pasadena, USA) are renowned for their work in ultrafast science and technology. Zewail received the Nobel Prize in Chemistry in 1999 for the development of ultrafast laser techniques that are capable of revealing the motions of individual atoms within a molecule during a reaction.

The most recent development to spring from Zewail’s Laboratory is ultrafast electron microscopy. This technique is a combination of a femtosecond optical system (a femtosecond equals 10-15 seconds) with a high-resolution electron microscope; the result is a new tool with extremely high resolution in time as well as in space.

Zewail and his team have now discovered that needle-shaped microcrystals of copper and the organic compound TCNQ (7,7,8,8-tetracyanoquinodimethane, C12H4N4 ), a crystalline, quasi-one-dimensional semiconductor, exhibit optomechanical phenomena that could be of use in nanoelectronic applications.

The investigation showed that these crystals stretch out to become longer (but not wider) when they are irradiated with laser pulses in the microscope. If the irradiation is switched off, they contract back to their original size. This effect was most obvious when one of these needles was broken by the shock of a short, strong laser pulse: A small crack of some ten to one hundred nanometers forms at the break. When the crystal is stretched out under irradiation, the nanoscale channel closes up; upon contraction, it reappears. The phenomenon is reversible, as confirmed by UEM.

Why do these micromaterials stretch under light? Within the crystal, the negatively charged TCNQ ions are arranged so that their central, flat, six-membered rings are piled up on top of each other in the long direction of the needle. The energy of a laser pulse excites electrons; part of this energy is transferred, resulting in uncharged TCNQ molecules. For the uncharged TCNQ, the stacked arrangement is no longer favorable, they now require more space and cause the crystal to grow longer. The degree of stretching depends on the strength of the energy absorbed.

“Our fundamental in situ UEM observations, which reveal the behavior of nanoscopic matter in space and time, opens up new areas to explore, especially in materials science, nanotechnology, and biology,” says Zewail.

Citation: Ahmed H. Zewail, Controlled Nanoscale Mechanical Phenomena Discovered with Ultrafast Electron Microscopy, Angewandte Chemie International Edition 2007, 46, No. 48, 9206–9210, doi: 10.1002/anie.200704147

Source: Angewandte Chemie

Explore further: Physicists learn how to control the movement of electrons in a molecule

Related Stories

The world's fastest nanoscale photonics switch

October 28, 2015

An international team of researchers from Lomonosov Moscow State University and the Australian National University in Canberra created an ultrafast all-optical switch on silicon nanostructures. This device may become a platform ...

Physicist shrinking electron-laser technology

October 14, 2015

Free electron lasers—powerful devices that can peer deep into molecular structure and the ultrafast timescales of chemistry—cost billions to build and are miles long, but an Arizona State University professor is constructing ...

Toward clearer, cheaper imaging of ultrafast phenomena

October 13, 2015

Many mysteries of nature are locked up in the world of the very small and the very fast. Chemical reactions and material phase transitions, for example, happen on the scale of atoms—which are about one tenth of one billionth ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.